Chronobiologic Optimization of Aging

  • Franz Halberg
  • Walter Nelson
Part of the Advances in experimental medicine and biology book series (AEMB, volume 108)


The physical, mental and economic health of older people and the role of geriatric medicine have been examined by psychiatrists and biologists as well as lawyers and social ecologists — all searching for a new approach to an old problem. When in October 1975, the journal Bioscience took a “new look at aging”, the editor recognized the importance of sociological and physiological aspects eminently chronobiologic yet indicated that such were “another story for another time.” Thereafter, an authoritative panel provided articles introduced by Moment’s (1975) scholarly and delightful reference to the Ponce de Leon trail toward a Fountain of Youth.


Circadian Rhythm Circadian System Biological Rhythm Circannual Rhythm Rhythm Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschoff, J. Aktivitätsmuster der Tagesreriodik. Naturwissenschaften 44: 361–367, 1957.CrossRefGoogle Scholar
  2. Aschoff, J., Saint Paul, U. v. and Wever, R. Die Lebensdauer von Fliegen unter dem Einfluss von Zeit-Verschiebungen. Naturwissenchaften 58: 574, 1971.CrossRefGoogle Scholar
  3. Aschoff, J., Hoffman, K., Pohl, H. and Wever, R. Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber. Chronobiologia 2: 23–80, 1974.Google Scholar
  4. Bartter, F.C. Periodicity and Medicine. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 6–13, 1974.Google Scholar
  5. Bartter, F.C, Delea, C.S., Baker, W., Halberg, F. and Lee, J.K. Chronobiology in the diagnosis and treatment of mesor-hypertension. Chronobiologia 3: 199–213, 1976.PubMedGoogle Scholar
  6. Brauer, R. In: Perspectives in Experimental Gerontology, N. Shock, ed. C.C. Thomas, Springfield, IL, p. 289, 1966.Google Scholar
  7. Brock, M.A. Circannual rhythms. I. Free-running rhythms in growth and development of the marine cnidarian, Campanularia flexuosa. Comp. Biochem. Physiol. 51(A): 377–383, 1975a.CrossRefGoogle Scholar
  8. Brock, M.A. Circannual rhythms. II. Temperature compensated free-running rhythms in growth and development of the marine cnidarian, Campanularia flexuosa. Comp. Biochem. Physiol. 51(A): 385–390, 1975b.CrossRefGoogle Scholar
  9. Brock, M.A. Circannual rhythms. III. Rhythmicity in the longevity of hydranths of the marine cnidarian, Campanularia flexuosa. Comp. Biochem. Physiol. 51(A): 391–398, 1975c.CrossRefGoogle Scholar
  10. Brockway, B. The 48-hour day simulated by the lighting regimen in the context of related spectral studies on human beings. Chronobiologia 4: 102–103, 1977.Google Scholar
  11. Carandente, F. and Halberg, F. Chronobiologic view of shift work and ulcers. Shift Work and Health. A Symposium, U.S. Dept. of Health, Education and Welfare, pp 273–283, July 1976.Google Scholar
  12. Clayton, D.L., McMullen, A.W. and Barnet, C.C. Circadian modification of drug-induced teratogenesis in rat fetuses. Chronobiologia 2: 210–217, 1975.PubMedGoogle Scholar
  13. Comfort, A. Physiology, homeostasis and aging. Gerontologia 14: 224–234, 1968.CrossRefGoogle Scholar
  14. Descovich, G.C., Montalbetti, N., Kühl, J.F.W., Rimondi, S. and Halberg, F. Circadian as well as circannual in-phase synchronization of urinary epinephrine (E) and norepinephrine (NE) and acrophase difference of E or NE with NER = NE/(NE + E) in mature and presumably healthy human beings. Int. J. Chronobiol. 1: 324, 1973.Google Scholar
  15. Dublin, L.I., Karsner, H.T., Pepper, O.H.P. and Brooks, B. Medical Problems of Old Age. University of Pennsylvania Press, Philadelphia, 46 pp, 1941.Google Scholar
  16. Ehret, C.F. Significance of circadian rhythms in aging. In: Aging and Levels of Biological Organization, A.M. Brues and G.A. Sacher, eds. University of Chicago Press, Chicago, pp 209–213, 1965.Google Scholar
  17. Falzone, J., Samis, H. and Wolff, V. Cellular compensation and controls in the aging process. J. Geront. 22: 42–52, 1967.PubMedCrossRefGoogle Scholar
  18. Fernandes, G., Yunis, E., Nelson, W. and Halberg, F. Differences in immune response of mice to sheep red blood cells as a function of circadian phase. In: Chronobiology. Proc. Int. Soc. for the Study of Biological Rhythms, Little Rock, Ark., L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 280–284, 1974.Google Scholar
  19. Fernandes, G., Halberg, F., Yunis, E. and Good, R.S. Circadian rhythmic plaque-forming cell response of spleens from mice immunized by SRBC. J. Immunol. 117: 962–966, 1976.PubMedGoogle Scholar
  20. Folkis, V. Regulatory process in the mechanism of aging. Exp. Geront. 3: 113–123, 1968.CrossRefGoogle Scholar
  21. Gedda, L. and Brenci, G. Chronogenetics, its foundation, scope and impact. Acta Genet. Med. Gemellol. 22: 3–17, 1973.PubMedGoogle Scholar
  22. Goetz, F., Bishop, J., Halberg, F., Sothern, R.B., Brunning, R., Senske, B., Greenberg, B., Minors, D., Stoney, P., Smith, I.D., Rosen, G.D., Cressey, D., Haus, E. and Apfelbaum, M. Timing of single daily meal influences relations among human circadian rhythms in urinary cyclic AMP and hemic glucagon, insulin and iron. Experientia 32: 1081–1084, 1976.PubMedCrossRefGoogle Scholar
  23. Good, R.A. and Yunis, E.J. Association of autoimmunity, immunodeficiency and aging in man, rabbits, and mice. Fed. Proc. 33: 2040–2050, 1974.PubMedGoogle Scholar
  24. Halberg, E., Connolly, M., Halberg, F., Yunis, E., Bailey, L., Nelson, E., Carandente, F., Cagnoni, M., Scarpelli, P., Lauro, R., Levine, H., Delea, C., Bartter, F.C. and Haus, E. Timely recognition (as well as timed treatment) of murine blood pressure elevation, as a model for the clinic. Chronobiologia 3: 72–73, 1976.Google Scholar
  25. Halberg, F. Beobachtungen über 24-Stunden Periodik in standardisierter Versuchsanordnung vor und nach Epinephrektomie und bilateraler optischer Enukleation, 20th Meeting of the German Physiologic Society, Homburg/Saar, September 1953. In: Berichte über die gesamte Physiologie 162: 354–355, 1954.Google Scholar
  26. Halberg, F. Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Z. Vitamin-Hormon-u. Fermentforsch. 10: 225–296, 1959.Google Scholar
  27. Halberg, F. Physiologic 24-hour rhythms: A determinant of response to environmental agents. In: Man’s Dependence on the Earthly Atmosphere, K.F. Schaefer, ed. MacMillan Co., New York, pp 48–98, 1962.Google Scholar
  28. Halberg, F. Chronobiology. Ann. Rev. Physiol. 31: 675–725, 1969.CrossRefGoogle Scholar
  29. Halberg, F. When to treat. Haematologica 60: 1–30, 1975a.PubMedGoogle Scholar
  30. Halberg, F. When to treat. Indian J. of Cancer 12: 1–20, 1975b.Google Scholar
  31. Halberg, F. and Howard, R.B. 24-hour periodicity and experimental medicine. Examples and Interpretations. Postgraduate Med. 24: 349–358, 1958.Google Scholar
  32. Halberg, F. and Nelson, W. Chronotherapy of immunocytoma made feasible by meal timing. Proceedings of the American Assoc. for Cancer Research 19: 190, 1976a.Google Scholar
  33. Halberg, F. and Nelson, W. Some aspects of chronobiology relating to the optimization of shift work. Shift Work and Health. A Symposium, U.S. Dept. of Health, Education and Welfare. pp 13–47, July 1976b.Google Scholar
  34. Halberg, F., Visscher, M.B. and Bittner, J.J. Relation of visual factors to eosinophil rhythm in mice. Am. J. Physiol. 179: 229–235, 1954.PubMedGoogle Scholar
  35. Halberg, F., Bittner, J.J., Gully, R.J., Albrecht, P.G. and Brackney, E.L. 24-hour periodicity and audiogenic convulsions in I mice of various ages. Proc. Soc. Exp. Biol. 88: 169–173, 1955.PubMedGoogle Scholar
  36. Halberg, F., Jacobson, E., Wadsworth, G. and Bittner, J. Audiogenic abnormality spectra, 24-hour periodicity and lighting. Science 128: 657–658, 1958.PubMedCrossRefGoogle Scholar
  37. Halberg, F., Halberg, E., Barnum, C.P. and Bittner, J.J. Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Photoperiodism and Related Phenomena in Plants and Animals, R.B. Withrow, ed. Amer. Assoc. Adv. Sci., Publ. No. 55, Washington, D.C., pp 803–878, 1959.Google Scholar
  38. Halberg, F., Tong, Y.L. and Johnson, E.A. Circadian system phase — an aspect of temporal morphology: Procedures and illustrative examples. Proc. Intl. Congress of Anatomists. In: The Cellular Aspects of Biorhythms. Symposium on Biorhythms. Springer-Verlag, pp 20-48, 1967.Google Scholar
  39. Halberg, F., Johnson, E.A., Nelson, W., Runge, W. and Sothern. R. Autorhythmometry procedures for physiologic self-measurements and their analysis. Physiology Teacher 1: 1–11-1972.Google Scholar
  40. Halberg, F., Haus, E., Cordoso, S.S., Scheving, L.E., Kühl, J.F.W., Shiotsuka, R., Rosene, G., Pauly, J.E., Runge, W., Spalding, J.F., Lee, J.K. and Good, R.A. Toward a chronotherapy of neoplasia: Tolerance of treatment depends upon host rhythms. Experientia (Basel) 28: 909–934, 1973.CrossRefGoogle Scholar
  41. Halberg, F., Halberg, E. and Carandente, F. Chronobiology and metabolism in the broader context of timely intervention and timed treatment. Diabetes Research Today, Symposia Medica Hoechst 12, pp 1–51, April 1976.Google Scholar
  42. Halberg, F., Carandente, F., Cornelissen, G. and Katinas, S. Glossary of chronobiology. Chronobiologia 4, Supplement 1. In: Psicronizer Insert (Figs. 8 and 9). Data presented by F. Halberg, E.W. Powell, W. Lubanovic, R.B. Sothern, B. Brockway, R.N. Pasley and L.E. Scheving, 1977a.Google Scholar
  43. Halberg, F., Gupta, B.D., Haus, E., Halberg, E., Deka, A.C., Nelson, W., Sothern, B., Cornelissen, G., Lee, J.K., Lakatua, D.J., Scheving, L.E. and Burns, E.R. Steps toward a cancer chrono-polytherapy. XIV Intl. Cong. of Therapeutics, Montpellier, France, L’Expansion Scientifique Francaise, pp 151–196, 1977b.Google Scholar
  44. Halberg, F., Sothern, R.B., Roitman, B., Halberg, E., Halberg, F., Mayersbach, H. v., Haus, E., Scheving, L.E., Kanabrocki, E.L., Bartter, F.C., Delea, C.S., Simpson, H.W., Tavadia, H.B., Fleming, K.A., Hume, P. and Wilson, C. Agreement of circadian characteristics for total leucocyte counts in different geographic locations. In: Proc. XII Intl. Cong. of the Intl. Soc. for Chronobiology, Washington, D.C., Il Ponte, Italy, pp 3-17, 1977c.Google Scholar
  45. Halberg, F., Powell, E.W., Lubanovic, W., Sothern, R.B., Brockway, B., Pasley, R.N. and Scheving, L.E. Nomifensine chrono-pharmacology, schedule-shifts and circadian temperature rhythms in di-suprachiasmatically lesioned rats — modeling emotional chronopathology and chronotherapy. Chronobiologia, in prep.Google Scholar
  46. Halberg, J., Halberg, E., Halberg, F., Delea, C. and Bartter, F.C. Development of blood pressure disease gauged by circadian rhythmometry of systolic blood pressure of Okamoto SH and SP rats on fixed or changing lighting schedules. Fed. Proc. 36: 548, 1977.Google Scholar
  47. Haus, E. and Halberg, F. Phase-shifting of circadian rhythms in rectal temperature, serum corticosterone and liver glycogen of the male C mouse. Rass. Neurol. Veg. 23: 83–112, 1969.PubMedGoogle Scholar
  48. Hayes, D.K., Cawley, D.M., Halberg, F., Sullivan, W.N. and Schechter, M.S. Survival of the codling moth, the pink bollworm, and the tobacco budworm after 90° phase-shifts at varied regular intervals throughout the life span. Shift Work and Health, A Symposium, U.S. Dept. of Health, Education and Welfare, pp 48-50, July 1976.Google Scholar
  49. Hedlund, L., Lischko, M., Rollag, M.D. and Niswender, G.D. Melatonin: Daily cycle in plasma and cerebral spinal fluid of calves. Science 195: 686–687, 1977.PubMedCrossRefGoogle Scholar
  50. Hufeland, C.W. Makrobiotik, the Art of Prolonging Life. 2nd English translation, printed for J. Bell, London, p 201, 1797.Google Scholar
  51. Isaacson, R.J. An Investigation of Some of the Factors Involved in the Closure of the Secondary Palate. Ph.D. Thesis, Univ. of Minnesota, Minneapolis, Minnesota, 1959.Google Scholar
  52. Leveille, G. The long-term effects of meal eating on lipogenesis enzyme activity and longevity in the rat. J. Nutr. 102: 549–556, 1972.PubMedGoogle Scholar
  53. Levine, H. and Halberg, F. Circadian rhythms of the circulatory system. Literature Review, Computerized Case Study of Transmeridian Flight and Medication Effects on a Mildly Hypertensive Subject. U.S. Air Force Report SAM-TR-72-3, p 64, April 1972.Google Scholar
  54. Levine, H., Halberg, F., Sothern, R.B., Bartter, F.C, Meyer, W.J. and Delea, C.S. Circadian phase-shifting with and without geographic displacement. In: Biorhythms and Human Reproduction, Int. Inst. for the Study of Human Reproduction Conference Proceedings, M. Ferin, F. Halberg, R.M. Richart and R. Vande Wiele, eds. John Wiley and Sons, Inc., New York, pp 557–574, 1974.Google Scholar
  55. Levine, H., Lakatua, D., Haus, E., Halberg, E. and Halberg, F. Interpersonal and intervariable differences in meal timing effects upon circadian rhythms in pulse, blood pressure and blood hormones of presumably healthy volunteers. Physiologist 18: 289, 1975.Google Scholar
  56. Lynch, H.J., Ozaki, Y., Shakal, D. and Wurtman, R.J. Melatonin excretion of man and rats: Effects of time of day, sleep, pinealectomy and food consumption. Int. J. Biometeor. 19: 267–279, 1975.CrossRefGoogle Scholar
  57. Luce, G.G. Biological Rhythms in Psychiatry and Medicine, Public Health Services Publ. No. 2088, pp 1-183, 1970.Google Scholar
  58. MacDonnell, W.R. On the expectation of life in ancient Rome and in the provinces of Hispania, Lusitania and Africa. J. Biometrika 9: 366–380, 1913.Google Scholar
  59. McCay, C. Chemical aspects of aging and the effect of diet upon aging. In: Cowdry’s Problems of Aging, A. Lansing, ed. Williams and Wilkins Co., pp 139-202, 1952.Google Scholar
  60. Meyer, W.J., Delea, C.S., Levine, H., Halberg, F. and Bartter, F.C. A study of periodicity in a patient with hypertension: Relation of blood pressure, hormones and electrolytes. In: Chronobiology. Proc. Intl. Soc. for the Study of Biological Rhythms, Little Rock, Arkansas, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 100–107, 1974.Google Scholar
  61. Moment, G.B. The Ponce de Leon Trail today. Bioscience, 623-628, October 1975.Google Scholar
  62. Montalbetti, N., Bonanomi, L. and Bonini, P. Il titmo circadiano della funzione glicocorticoidea surrenalica nell’eta senile. Gorsots. iM onore di Giuseppe pellegrini. Corsa A. Manzoni. Tipografia Viscontea, 335-347, 1966.Google Scholar
  63. Montalbetti, N., Ghiringhelli, F., Bonini, P.A. and Bonanomi, L. Adrenal rhythms during human senescence. Acta. Endocr. Suppl. 119, 44, 1967.Google Scholar
  64. Pittendrigh, C. and Minis, D. Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Nat. Acad. Sci. 69: 1539–1587, 1972.Google Scholar
  65. Reinberg, A. and Halberg, F. Circadian chronopharmacology. Ann. Rev. Pharmacol. 2: 455–492, 1971.CrossRefGoogle Scholar
  66. Reinberg, A., Ghata, J., Halberg, F., Apfelbaum, M., Gervais, P., Boudon, P., Abulker, C. and Dupont, J. Treatment schedules modify circadian timing in human adrenocortical insufficiency. In: Chronobiology, Proc. Int. Soc. for the Study of Biological Rhythms, Little Rock, Arkansas, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 168–173, 1974.Google Scholar
  67. Rollag, M.D. and Niswender, G.D. Radioimmunoassay of serum concentration of melatonin in sheep exposed to different lighting regimens. Endocrinology 98: 482–489, 1976.PubMedCrossRefGoogle Scholar
  68. Russell, E. Lifespan and aging patterns. In: Biology of the Laboratory Mouse, E. Green, ed. McGraw Hill, Toronto and London, pp 511–519, 1966.Google Scholar
  69. Sacher, G. Molecular versus systemic theories of the genesis of aging. Exp. Geront. 3: 265–271, 1968.CrossRefGoogle Scholar
  70. Samis, H.V. Aging: The loss of temporal organization. Persp. Biol. Med. 12: 95–102, 1968.Google Scholar
  71. Scheving, L.E., Rogg, C. III, Halberg, F., Pauly, J.E. and Hand, E.A. Circadian variations in residents of a senior citizens home. In: Chronobiology. Proc. Int. Soc. for the Study of Biological Rhythms, Little Rock, Arkansas, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 353–357, 1974.Google Scholar
  72. Serio, M., Piolanti, P., Cappelli, G., De Magistris, L., Ricci, F., Anazalone, M. and Guisti, G. The miscible pool and turnover rate of cortisol in the aged, and in relation to time of day. Exp. Geront. 4: 95–101, 1969.CrossRefGoogle Scholar
  73. Serio, M., Piolanti, P., Romano, S., De Magistris, L. and Guisti, G. The circadian rhythm of plasma cortisol in subjects over 70 years of age. J. Geront. 25: 95–97, 1970.PubMedCrossRefGoogle Scholar
  74. Simpson, H.W. and Halberg, F. Phase modulation in desynchronized human circadian adrenocortical cycle on 21-hour day simulating circumglobal travel (45° longitude/day). In: Endocrinology. Proc. Fourth Intl. Congress of Endocrinology, Washington, D.C., Int. Congress Series No. 273 (ISBN 90 219 0169 2), pp 229-232, 1974.Google Scholar
  75. Simpson, H.W., Lobban, M.C. and Halberg, F. Near 24-hour rhythms in subjects living on a 21-hour routine in the arctic. Arctic Anthropology 7: 144–164, 1970.Google Scholar
  76. Simpson, H.W., Bellamy, N., Bohlen, J. and Halberg, F.R. Double blind trial of a possible chronobiotic (Quiadon). Int. J. Chronobiol. 1: 287–311, 1973.PubMedGoogle Scholar
  77. Strehler, B. Time, Cells and Aging. Academic Press, New York, 270 pp, 1962.Google Scholar
  78. Tanzj, P.L. Illustrazione e ristultati dell cronofarmacologia antiblastica nei tumori poomanari. Minerva Medica 67: 4173–4189, 1976.Google Scholar
  79. Tanzj, P.L. Chronochimiotherapie antiblastique dans les cancers du poumon. XIVth International Congress of Therapeutics, Montpellier, France, p 29, 1977.Google Scholar
  80. Vaughan, G.M., Pelham, R.W., Pang, S.F., Loughlin, L.L., Wilson, K.M., Sandock, K.L., Vaughan, M.K., Koslow, S.H. and Reither, R.J. Nocturnal elevation of plasma melatonin and urinary 5-hydroxy-indoleacetic acid in young men: Attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. J. Clin. Endocrinol. Metab. 42: 752–764, 1976.PubMedCrossRefGoogle Scholar
  81. Walford, R.L. The Immunologic Theory of Aging. Munksgaard, Copenhagen, 248 pp, 1969.Google Scholar
  82. Wax, T.M. and Goodrick, C.L. Voluntary exposure to light by young and aged albino and pigmented inbred mice as a function of light intensity. Developmental Psychology 8: 297–303, 1975.CrossRefGoogle Scholar
  83. Went, F. The periodic aspect of photoperiodism and thermoperiodicity. In: Photoperiodism and Related Phenomena in Plants and Animals, R. Withrow, ed. A.A.A.S., Washington, D.C., pp 551–564, 1959.Google Scholar
  84. Yunis, E.J. and Greenberg, L.J. The immunopathology of aging. Fed. Proc. 33: 2017–2019, 1974.PubMedGoogle Scholar
  85. Yunis, E.J., Halberg, F., McMullen, A., Roitman, B. and Fernandes, G. Model studies of aging, genetics and stable changing living routines simulated by lighting regimen manipulation on the mouse. Int. J. Chronobiol. 1: 368–369, 1973.Google Scholar
  86. Yunis, E.J., Fernandes, G., Nelson, W. and Halberg, F. Circadian temperature rhythms and aging in rodents. In: Chronobiology. Proc. Int. Soc. for the Study of Biological Rhythms, Little Rock, Arkansas, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin, Ltd., Tokyo, pp 358–363, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Franz Halberg
    • 1
  • Walter Nelson
    • 1
  1. 1.Chronobiology Lab. Dept. of Lab. Medicine and PathologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations