Skip to main content

Circadian Organization and Female Reproductive Cyclicity

  • Chapter
Aging and Biological Rhythms

Part of the book series: Advances in experimental medicine and biology ((AEMB,volume 108))

Abstract

One of the most challenging problems facing reproductive physiologists is the determination of the mechanisms regulating cyclic reproductive events. This is made especially obvious when we consider the types and numbers of reproductive cycles demonstrable in a single species. For example, in reproductively mature hamsters ovulation occurs with unerring precision every four days. This four-day, or quadradian, estrous cycle is superimposed on an annual rhythm of reproductive readiness. Thus, in a hamster exposed to natural environmental photoperiod, reproduction is confined to the months of spring and summer during which approximately 10-12 ova are ovulated every four days. This cycle continues unless interrupted by pregnancy, pseudo-pregnancy or by the decreasing day-lengths of late summer and autumn. For the hamster, therefore, reproduction can be viewed as a series of cyclic events the periodicity of which varies from months to hours. Central to all of these must be one or more timers, or oscillators, whose function(s) it is to synchronize these cycles within each organism and among organisms of the population, guaranteeing for the population that reproductive efforts will be successful.

Work supported in part by NSF Research Grant PCM-04039.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleva, J.J. and Umberger, E.J. Evidence for neural control of the release of pituitary ovulating hormone in the golden Syrian hamster. Endocrinology 78: 1125–1129, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Alleva, J.J., Waleski, M.V. and Alleva, F.R. A biological clock controlling the estrous cycle of the hamster. Endocrinology 88: 1368–1379, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Antunes-Rodriquez, J. and McCann, S.M. Effect of suprachiasmatic lesions on the regulation of LH secretion in the female rat. Endocrinology 81: 666–670, 1967.

    Article  Google Scholar 

  • Arimura, A., Matsuo, H., Baba, Y. and Schally, A.V. Ovulation induced by synthetic luteinizing hormone-releasing hormone in the hamster. Science 174: 511–512, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J. and Meyer-Lohman, J. Die 24-Stunden-Periodik von Nagern im naturliche and kunstlichen Belichtunqswechsel. Z. Tierpsychol. 11: 476–484, 1954.

    Article  Google Scholar 

  • Ashchoff, J., Figala, J. and Poppel, E. Circadian rhythms of locomotor activity in the golden hamster (Mesocricetus auratus) measured with two different techniques. J. Comp. Physiol. Psychol. 85: 20–28, 1973.

    Article  Google Scholar 

  • Bex, F.J. and Goldman, B.D. Serum gonadotropins and follicular development in the Syrian hamster. Endocrinology 96: 928–933, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C.A., Weiner, R.I., Gorski, R.A. and Sawyer, C.H. Secretion of pituitary luteinizing hormone and follicle stimulating hormone in female rats made persistently estrous or diestrous by hypothalamic deafferentation. Endocrinology 90: 855–861, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, R.S. and Goldman, B.D. Diurnal rhythms in gonadotropins and progesterone in lactating and photoperiod induced acyclic hamsters. Biol. Reprod. 13: 617–622, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, V.G. Environmental entrainment of circadian rhythms. Cold Spring Harbor Symp. Quant. Biol. 25: 29–48, 1960.

    Article  Google Scholar 

  • Burchard, J.E. Resetting a biological clock. Ph.D. Dissertation, Princeton University, 1958.

    Google Scholar 

  • Callard, I.P. and McConnel, W.F. Effects of intrahypothalamic estrogen implants on ovulation in Sceloporus cyanogenys. Gen. Comp. Endocrinol. 13, 496, 1969.

    Article  Google Scholar 

  • Ciaccio, L.A. and Lisk. R.D. Central control of estrous behavior in the female golden hamster. Estrogen sensitivity within the hypothalamus. Neuroendocrinology 13: 21–28, 1973/1974.

    Article  CAS  Google Scholar 

  • Czyba, J., Girod, C. and Durand, N. Sur l’antagonisme epiphysio-hypophysaire et les variations saisonieres de la spermalogenese chez le hamster dore (Mesocricetus auratus) C. R. Soc. Biol. 158: 742–745, 1964.

    CAS  Google Scholar 

  • Daan, S. and Pittendrigh, C.S. A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. Comp. Physiol. 106: 253–266, 1976.

    Article  Google Scholar 

  • Daane, T.A. and Parlow, A.F. Periovulatory patterns of rat serum follicle stimulating hormone and luteinizing hormone during the normal estrous cycle: Effects of pentobarbital. Endocrinology 88: 653–663, 1971.

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey, P.J. Function of a light response rhythm in hamsters. J. Cell Comp. Physiol. 63: 189–196, 1964.

    Article  CAS  Google Scholar 

  • Dierickx, K. Experimental identification of a gonadotropic center. Z. Zellforsch. 74: 53–79, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Dierickx, K. The gonadotropic center of the tuber cinereum hypothalami and ovulation. Z. Zellforsch. 77: 188–203, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, V.B. and Moore, R.Y. The primary and accessory optic systems in the golden hamster. Acta Anat. 89: 359–371, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J.A., Stetson, M.H. and Menaker, M. Regulation of testis function in golden hamsters: A circadian clock measures photo-periodic time. Science 171: 1169–1171, 1972.

    Google Scholar 

  • Elliott, J.A., Stetson, M.H. and Menaker, M. (unpublished).

    Google Scholar 

  • Everett, J.W. Central neural control of reproductive functions of the adenohypophysis. Physiol. Rev. 44: 373–431, 1964.

    PubMed  CAS  Google Scholar 

  • Everett, J.W. The Third Annual Carl G. Hartman Lecture: Brain, pituitary gland, and the ovarian cycle. Biol. Reprod. 6: 3–12, 1972.

    PubMed  CAS  Google Scholar 

  • Everett, J.W. and Sawyer, C.H. A 24-hour periodicity in the “LH release apparatus” of female rats disclosed by barbiturate sedation. Endocrinology 47: 198–218, 1950.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, K.M. and Zucker, I. Circadian organization of the estrous cycle of the golden hamster. Proc. Natl. Acad. Sci. USA 73: 2923–2927, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Follett, B.K. The neuroendocrine regulation of gonadotropin secretion in avian reproduction. In: Breeding Biology of Birds, D.S. Farner, ed. National Acad. Sciences, Washington, D.C., pp 209–243, 1973.

    Google Scholar 

  • Gaston, S. and Menaker, M. Photoperiodic control of hamster testis. Science 158: 925–928, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Halász, B. The endocrine effects of isolation of the hypothalamus from the rest of the brain. In: Frontiers in Neuroendocrinology, W.F. Ganong and L. Martini, eds. Oxford University Press, London, pp 307–342, 1969.

    Google Scholar 

  • Halász, B. and Gorski, R.A. Gonadotropic hormone secretion in female rats after partial or total interruption of neural afferents to the medial basal hypothalamus. Endocrinology 80: 608–622, 1967.

    Article  PubMed  Google Scholar 

  • Halász, B. and Pupp, L. Hormone secretion of the anterior pituitary gland after physical interruption of all nervous pathways to the hypophysiotropic area. Endocrinology 77: 553–562, 1965.

    Article  PubMed  Google Scholar 

  • Hendrickson, A.E., Wagoner, N. and Cowan, W.M. An autoradiographic and electron microscopic study of retinohypothalamic connections. Z. Zellforsch. 135: 1–26, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, K. Overt circadian frequencies and circadian rule. In: Circadian Clocks, J. Aschoff, ed. North Holland, Amsterdam, pp 87–94, 1965.

    Google Scholar 

  • Kaasjager, W.A., Woodbury, D.M., van Dieten, J.A.M.J. and van Rees, G.P. The role played by the preoptic region of the hypothalamus in spontaneous ovulation and ovulation induced by progesterone. Neuroendocrinology 7: 54–64, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R., Joseph, B.J. and Whitlock, D.G. Evaluation of an auto-radiographic neuroanatomical tracing method. Brain Res. 8: 319–336, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Legan, S.J. and Karsch, F.J. A daily signal for the LH surge in the rat. Endocrinology 96: 57–62, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Legan, S.J., Coon, G.A. and Karsch, F.J. Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology 96: 50–56, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Lisk, R.D. Neural control of gonad size by hormone feedback in the desert iguana Dipsosaurus dorsalis dorsalis. Gen. Comp. Endocrinol. 8: 258–266, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Lisk, R.D. and Ferguson, D.S. Neural localization of estrogen-sensitive sites for inhibition of ovulation in the golden hamster Mesocricetus auratus. Neuroendocrinology 12: 153–160, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Martini, L., Fraschini, F. and Motta, M. Neural control of anterior pituitary functions. Rec. Progr. Hormone Res. 24: 439–496, 1968.

    CAS  Google Scholar 

  • Mogler, R.K.H. Dan endokrene system des syrischen Gold hamsters unter Berucksichtigung des naturlichen Winterschlafs. Z. Morph. Oekol. Tiere 47: 267–308, 1958.

    Article  Google Scholar 

  • Moore, R.Y. Visual pathways and the central neural control of diurnal rhythms. In: The Neurosciences — Third Study Program, F.O. Schmidt and F.G. Worden, eds. M.I.T. Press, Cambridge, MA, 1974.

    Google Scholar 

  • Moore, R.Y. and Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42: 201–206, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y. and Klein, D.C. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyl-transferase activity. Brain. Res. 71: 17–33, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y. and Lenn, N.J. A retino-hypothalamic projection in the rat. J. Comp. Neurol. 146: 1–14, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R.L. Estrogen and progesterone effects on the neural control of the preovulatory LH release in the golden hamster. Biol. Reprod. 13: 218–222, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R.L. and Spies, H.G. Neural control of the estrogen-dependent twenty-four-hour periodicity of LH release in the golden hamster. Endocrinology 95: 1367–1372, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R.L., Blake, C.A. and Sawyer, C.H. Estrogen-dependent twenty-four-hour periodicity in pituitary LH release in the female hamster. Endocrinology 93: 965–970, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Palka, Y., Coyer, D. and Critchlow, V. Effects of isolation of medial basal hypothalamus on pituitary-adrenal and pituitary-ovarian functions. Neuroendocrinology 5: 333–349, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Peter, R.E. Hypothalamic control of thyroid gland activity and gonadal activity in the goldfish, Carassius auratus. Gen. Comp. Endocrinol. 14: 334–356, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C.S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25: 159–182, 1960.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C.S. On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Circadian Clocks, J. Aschoff, ed. North Holland, Amsterdam, pp 277-297, 1965.

    Google Scholar 

  • Pittendrigh, C.S. Circadian rhythms, space research and manned space flight. Life Sciences and Space Research 5: 122–134, North Holland, Amsterdam, 1967.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C.S. Circadian oscillations in cells and the circadian organization of multicellular systems. In: The Neurosciences — Third Study Program, F.O. Schnidt and F.G. Worden, eds. M.I.T. Press, Cambridge, MA, 1974.

    Google Scholar 

  • Reiter, R.J. Morphological studies on the reproductive organs of blinded male hamsters and the effects of pinealectomy or superior cervical ganglionectomy. Anat. Rec. 160: 13–24, 1968a.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J. The pineal gland and gonadal development in male rats and hamsters. Fertil. Steril. 19: 1009–1017, 1968b.

    PubMed  CAS  Google Scholar 

  • Reiter, R.J. Pineal function in long-term blinded male and female golden hamsters. Gen. Comp. Endocrinol. 12: 460–468, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J. Evidence for refractoriness of the pituitary-gonadal axis to the pineal gland in golden hamsters and its possible implications in annual reproductive rhythms. Anat. Rec. 173: 365–372, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J. Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature. Endocrinology 92: 423–430, 1973a.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J. Comparative physiology: Pineal gland. Ann. Rev. Physiol. 35: 305–328, 1973b.

    Article  CAS  Google Scholar 

  • Reiter, R.J. Influence of pinealectomy on the breeding capability of hamsters maintained under natural photoperiodic and temperature conditions. Neuroendocrinology 13: 366–370, 1973/1974.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R.J. and Sorrentino, S. Jr. Prevention of pineal-mediated reproductive responses in light-deprived hamsters by partial or total isolation of the medial basal hypothalamus. J. Neuro-Visc. Relat. 32: 355–367, 1972.

    Article  CAS  Google Scholar 

  • Reiter, R.J., Sorrentino, S. Jr. and Hoffman, R.A. Early photo-periodic conditions and pineal antigonadal function in male hamsters. Internal. J. Fertil. 15: 163–170, 1970.

    CAS  Google Scholar 

  • Rusak, B. and Morin, L.P. Testicular responses to photoperiod are blocked by lesions of the suprachiasimatic nuclei in golden hamsters. Bio. Reprod. 15: 366–374, 1976.

    Article  CAS  Google Scholar 

  • Schneider, H.P.G., Crighton, D.B. and McCann, S.M. Suprachiasmatic LH-releasing factor. Neuroendocrinology 5: 271–280, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Schramm, L.P., Pomerantz, D.K. and McMahon, C.E. Gonadal involution in developing hamsters: A necessary neural pathway. The Physiologist 13: 303, 1970.

    Google Scholar 

  • Seegal, R.F. and Goldman, B.D. Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biol. Reprod. 12: 223–231, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, H.I., Bast, J.D. and Greenwald, G.S. The effects of phenobarbital and gonadal steroids on periovulatory serum levels of luteinizing hormone and follicle-stimulating hormone in the hamster. Endocrinology 98: 48–55, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino, S. Jr and Reiter, R.J. Lack of pineal-induced gonadal regression in dark-exposed or blind hamsters after surgical isolation of the medial-basal hypothalamus. Gen. Comp. Endocrinol. 17: 227–231, 1971.

    Article  PubMed  Google Scholar 

  • Stephan, F.K. and Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Nat. Acad. Sci. USA 69: 1583–1586, 1972a.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, F.K. and Zucker, I. Rat drinking rhythms: Central visual pathways and endocrine factors mediating responsiveness to environmental illumination. Physiol. Behav. 8: 315–326, 1972b.

    Article  PubMed  CAS  Google Scholar 

  • Sterba, G. Endocrinology of the lampreys. Gen. Comp. Endocrinol. Suppl. 2: 500–509, 1969.

    Article  Google Scholar 

  • Stetson, M.H. Hypothalamic regulation of testicular function in Japanese quail. Z. Zellforsch. 130: 389–410, 1972a.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M.H. Hypothalamic regulation of gonadotropin release in female Japanese quail. Z. Zellforsch. 130: 411–428, 1972b.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M.H. and Gibson, J.T. The estrous cycle in golden hamsters: A circadian pacemaker times preovulatory gonadotropin release. J. of Expl. Zoology 201: 289–294, 1977.

    Article  CAS  Google Scholar 

  • Stetson, M.H. and Watson-Whitmyre, M. The nucleus suprachiasmaticus The biological clock in the hamster? Science 191: 197–199, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M.H. and Watson-Whitmyre, M. The neural clock regulating estrous cyclicity in hamsters: Gonadotropin release following barbiturate blockade. Biol. Reprod. 16: 536–542, 1977.

    PubMed  CAS  Google Scholar 

  • Stetson, M.H., Elliott, J.A. and Menaker, M. Photoperiodic regulation of hamster testis: Circadian sensitivity to the effect of light. Biol. Reprod. 13: 329–339, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M.H., Matt, K.S. and Watson-Whitmyre, M. Photoperiodism and reproduction in golden hamsters: Circadian organization and the termination of photorefractoriness. Biol. Reprod. 14: 531–537, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M.H., Watson-Whitmyre, M. and Matt, K.S. Termination of photorefractoriness in golden hamsters-photoperiodic requirements. J. Exp. Zoology 202: 81–88, 1977.

    Article  CAS  Google Scholar 

  • Stetson, M.H., Watson-Whitmyre, M. and Matt, K.S. Circadian organization in the timing of reproduction: Timing of the 4-day cycle of the hamster. J. Interdisciplinary Cycle Res. (in press).

    Google Scholar 

  • Stetson, M.H., Watson-Whitmyre, M. and Matt, K.S. Cyclic gonadotropin release in the presence and absence of estrogenic feedback in ovariectomized golden hamsters. Biol. Reprod. (in press).

    Google Scholar 

  • Stetson, M.H., Watson-Whitmyre, M. and Matt, K.S. (unpublished).

    Google Scholar 

  • Taleisnik, S. and McCann, S.M. Effects of hypothalamic lesions on the secretion and storage of hypophysial luteinizing hormone. Endocrinology 68: 263–272, 1961.

    Article  PubMed  CAS  Google Scholar 

  • Tejasen, T. and Everett, J.W. Surgical analysis of the preoptico-tuberal pathway controlling ovulating release of gonadotropins in the rat. Endocrinology 81: 1387–1396, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Grant G. and Guillemin, R. Chemistry in the hypothalamic releasing factors — Studies on structure-function relationships. In: Frontiers in Neuroendocrinology, W.F. Ganong and L. Martini, eds. Oxford Univ. Press, London, pp 375–413, 1973.

    Google Scholar 

  • Vendrely, E., Guerillot, C., Basseville, C. and DeLage, C. Poids testiculaire et spermatogenese du hamster dore au cours du cycle saisonnier. C. R. Soc. Biol. 165: 1562–1565, 1971.

    CAS  Google Scholar 

  • Watson-Whitmyre, M. and Stetson, M.H. Circadian organization in the regulation of reproduction: Identification of a circadian pacemaker in the hypothalamus of the hamster. Journal of Interdisciplinary Cycle Research (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stetson, M.H. (1978). Circadian Organization and Female Reproductive Cyclicity. In: Samis, H.V., Capobianco, S. (eds) Aging and Biological Rhythms. Advances in experimental medicine and biology, vol 108. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4460-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4460-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4462-0

  • Online ISBN: 978-1-4757-4460-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics