Trace Element Deficiencies in Man

  • Clare E. Casey
  • K. Michael Hambidge

Abstract

Trace elements have had a role, albeit an unwitting one, in medicine since the ancient Egyptians used calamine (a zinc preparation) for skin disorders and the Greeks used burnt sponges to treat goiter. However, it is only in the last 50 years that the nutritional importance of trace elements has been recognized. The list of elements known to be essential for mammals now includes zinc, copper, manganese, iodine, cobalt, molybdenum, chromium, selenium, vanadium, nickel, and silicon; fluorine, tin, and arsenic may also be essential. Of these 14 elements, at present there are only 3 with well-recognized human deficiency syndromes—copper, zinc, and iodine, which are all relatively abundant and easy to measure in biological specimens. There is evidence that poor chromium nutrition may also be widespread, but analytical difficulties make interpretation of data difficult. Deficiencies of selenium, manganese, and cobalt are of economic importance in animal husbandry but do not appear to be a problem in normal human nutrition (except selenium in some geographical areas). Nutritional iodine deficiency is a recognized problem in some areas of the world and is the object of many public health projects. This topic has been well documented (National Research Council, 1970; Wayne et al., 1964) and will not be included in this review. Of the other elements, overt deficiencies have only been seen in the carefully controlled laboratory environment (Schwarz, 1974).

Keywords

Zinc Deficiency Zinc Level Copper Deficiency Acrodermatitis Enteropathica Total Daily Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaway, W. H., Kubota, J., Losee, F., and Roth, M., 1968, Selenium, molybdenum, and vanadium in human blood, Arch. Environ. Health 16: 342.Google Scholar
  2. Al-Rashid, R. A., and Spangler, J., 1971, Neonatal copper deficiency, N. Engl. J. Med. 285: 841.CrossRefGoogle Scholar
  3. Anderson, R. J., 1969, The relationship between dental caries and the trace element molybdenum, Caries Res. 3:75.Google Scholar
  4. Baumslag, N., Yeager, D., Levin, L., and Petering, H. G., 1974, Trace metal content of maternal and neonate hair, Arch. Environ. Health 29: 186.Google Scholar
  5. Beisel, W. R., and Pekarek, R. S., 1972, Acute stress and trace element metabolism, in Neurobiology of the Trace Metals Zinc and Copper ( C. C. Pfeiffer, ed.), pp. 53–82, Academic Press, New York.Google Scholar
  6. Berfenstam, R., 1952, Studies on blood zinc, Acta Paediatr. Scand. (Suppl. 87) 41: 5.Google Scholar
  7. Bradfield, R. B., Yee, T., and Baertl, J. M., 1969, Hair zinc levels of Andean Indian children during protein-calorie malnutrition, Am. J. Clin. Nutr. 22: 1349.Google Scholar
  8. Brune, D., Samsall, K., and Westov, P. 0., 1966, A comparison between the amounts of As, Au, Br, Cu, Fe, Mo, Se and Zn in normal and uraemic human whole blood by means of neutron activation analysis, Clin. Chim. Acta 13: 285.Google Scholar
  9. Burch, R. E., Hahn, H. K. J., and Sullivan, J. F., 1975, Newer aspects of the roles of zinc, manganese, and copper in human nutrition, Clin. Chem. 21: 501.Google Scholar
  10. Burk, R. F., Pearson, W. N., Wood, R. F., and Viteri, F., 1967, Blood-selenium levels and in vitro red blood cell uptake of 75Se in kwashiorkor, Am. J. Clin. Nutr. 20: 723.Google Scholar
  11. Burtrimovitz, G. P., and Purdy, W. C., 1978, Zinc nutrition and growth in a childhood population, Am. J. Clin. Nutr. 31: 1409.Google Scholar
  12. Calhoun, N. R., Smith, J. C., and Becker, K. L., 1974, The role of zinc in bone metabolism, Clin. Orthop. 103: 212.CrossRefGoogle Scholar
  13. Calhoun, N. R., McDaniel, E. G., Howard, M. P., and Smith, J. C., 1978, Loss of zinc from bone during deficiency state, Nutr. Rep. lnt. 17: 299.Google Scholar
  14. Carlisle, E. M., 1974, Essentiality and function of silicon, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 407–423, University Park Press, Baltimore.Google Scholar
  15. Carter, J. P. Kattab, A., Abd-El-Hadi, K., Davis, J. T., El Gholmy, A., and Patwardhan, V. N., 1968, Chromium III in hypoglycemia and in impaired glucose utilization in kwashiorkor, Am. J. Clin. Nutr. 21:195.Google Scholar
  16. Casey, C. E., and Robinson, M. F., 1978, Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues, Br. J. Nutr. 39: 639.CrossRefGoogle Scholar
  17. Cavell, P. A., and Widdowson, E. M., 1964, Intakes and excretions of iron, copper and zinc in the neonatal period, Arch. Dis. Child. 39: 496.CrossRefGoogle Scholar
  18. Cordano, A., and Graham, G. G., 1966, Copper deficiency complicating severe chronic intestinal malabsorption, Pediatrics 38: 596.Google Scholar
  19. Cordano, A., Baertl, J. M., and Graham, G. G., 1964, Copper deficiency in infancy, Pediatrics 34: 324.Google Scholar
  20. Cordano, A., Placko, R. P., and Graham, G. G., 1966, Hypocupremia and neutropenia in copper deficiency, Blood 28:280.Google Scholar
  21. Cotzias, G. C., Miller, S. T., and Edwards, J., 1966, Neutron activation analysis: The stability of manganese concentrations in human blood and serum, J. Lab. Clin. Med. 67: 836.Google Scholar
  22. Danks, D. M., Campbell, P. E., Stevens, B. J., Mayne, V., and Cartwright, E., 1972, Menkes’ kinky hair syndrome, Pediatrics 50:188.Google Scholar
  23. Danks, D. M., Cartwright, E., Stevens, B. J., and Townley, R. R. W., 1973, Menkes’ kinky hair disease: Further definition of the defect in copper transpost, Science 179:1140.Google Scholar
  24. Dauncey, M. J., Shaw, J. C. L., and Urman, J., 1977, The absorption and retention of magnesium, zinc, and copper by low birth weight infants fed pasteurized human breast milk, Pediatr. Res. 11: 991.CrossRefGoogle Scholar
  25. Davidson, I. W. F., and Burt, R. L., 1973, Physiological changes in plasma chromium of normal and pregnant women: Effect of glucose load, Am. J. Obstet. Gynecol. 116:601.Google Scholar
  26. Deosthale, Y. G., and Gopalan, C., 1974, The effect of molybdenum levels in sorghum (Sorghum vulgare Pers.) on uric acid and copper excretion in man, Br. J. Nutr. 31: 351.CrossRefGoogle Scholar
  27. Doisy, E. A., 1972, Micronutrient controls on biosynthesis of clotting proteins and cholesterol, in Trace Substances in Environmental Health-VI ( D. D. Hemphill, ed.), pp. 193–199, University of Missouri, Columbia.Google Scholar
  28. Doisy, R. J., Streeten, D. H. P. Souma, M. L., Kalafer, M. E., Rekant, S. I. and Dalakos, T. G., 1971, Metabolism of 51Chromium in human subjects normal, elderly, and diabetic subjects, in Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer, eds.), pp. 155–168, Marcel Dekker, New York.Google Scholar
  29. Doisy, R. J., Streeten, D. H. P. Freiberg, J. M., and Schneider, A. J. 1976, Chromium metabolism in man and biochemical effects, in Trace Elements in Human Health and Disease, II (A. S. Prasad, ed.), pp. 79–104, Academic Press, New York.Google Scholar
  30. Douglas, B. S., Lines, D. R. and Tse, C. E., 1976, Serum zinc levels in New Zealand children, N.Z. Med. J. 83:192.Google Scholar
  31. Dunlap, W. M., James, G. W., and Hume, D. M., 1974, Anemia and neutropenia caused by copper deficiency, Ann. Intern. Med. 80: 470.CrossRefGoogle Scholar
  32. Duran, M., Beemer, F. A., Heiden, C. V. D., de Bree, P. K., Brink, M., and Wadman, S. K., 1980, Combined deficiency of xanthine oxidase and sulphite oxidase• a defect of molybdenum metabolism or transport?, J. Inherited Metab. Dis. (in press).Google Scholar
  33. Eggleton, W. G. E., 1939, The zinc content of epidermal structures in beriberi, Biochem. J. 33: 403.Google Scholar
  34. Eminians, J., Reinhold, J. G., Kfoury, G. A., Amirhakimi, G. H. Sharif, H. and Ziai, M., 1967Google Scholar
  35. Zinc nutrition of children in Fars province of Iran, Am. J. Clin. Nutr. 20:734.Google Scholar
  36. Evans, G. W., 1976, Zinc absorption and transport, in Trace Elements in Human Health and Disease, I ( A. S. Prasad, ed.), pp. 181–187, Academic Press, New York.Google Scholar
  37. Evans, G. W., and Hahn, C. J., 1974, Copper and zinc binding components in rat intestine, in Protein-Metal Interactions ( M. Friedman, ed.), pp. 285–297, Plenum Press, New York.CrossRefGoogle Scholar
  38. Freeland, J. H., and Cousins, R. J., 1976, Zinc content of selected foods, J. Am. Diet. Assoc. 68: 526.Google Scholar
  39. Ganther, H. E., Hafeman, D. G., Lawrence, R. A., Serfass, R. E., and Hoekstra, W. G., 1976Google Scholar
  40. Selenium and glutathione peroxidase in health and disease—a review, in Trace Elements in Human Health and Disease, II (A. S. Prasad, ed.), pp. 165–234, Academic Press, New York.Google Scholar
  41. Geissler, C., Calloway, D. H., and Margen, S., 1978, Lactation and pregnancy in Iran II. Diet and nutritional status, Am. J. Clin. Nutr. 31: 341.Google Scholar
  42. Golden, M. H. N., Golden, B., Harland, P. S. E. G., and Jackson, A. A., 1978, Zinc and immunocompetence in protein-energy malnutrition, Lancet 1: 1226.CrossRefGoogle Scholar
  43. Graham, G. C., and Cordano, A., 1976, Copper deficiency in human subjects, in Trace Elements in Human Health and Disease, I ( A. S. Prasad, ed.), pp. 363–372, Academic Press, New York.Google Scholar
  44. Greger, J. L., 1977, Dietary intake and nutritional status in regard to zinc of institutionalized aged, J. Gerontol. 32: 549.CrossRefGoogle Scholar
  45. Greger, J. L., and Geissler, A. H., 1978, Effect of zinc supplementation on taste acuity of the aged, Am. J. Clin. Nutr. 31: 633.Google Scholar
  46. Gürson, C. T., 1977, The metabolic significance of dietary chromium, in Advances in Nutritional Research, Vol. 1 (H. H. Draper, ed.), pp. 23–53, Plenum Press, New York.Google Scholar
  47. Gürson, C. T., and Saner, G., 1978, The effect of glucose loading on urinary excretion of chromium in normal adults, in individuals from diabetic families and in diabetics, Am. J. Clin. Nutr. 31: 1158.Google Scholar
  48. Gürson, C. T., Saner, G., Mertz, W., Wolf, W. R., and Sökücü, S., 1975, Nutritional significance of chomium in different chronological age groups and in populations differing in nutritional backgrounds, Nutr. Rep. Int. 12: 9.Google Scholar
  49. Guthrie, B. E., 1975, Chromium, manganese, copper, zinc and cadmium content of New Zealand foods, N.Z. Med. J. 82: 418.Google Scholar
  50. Guthrie, B. E., McKenzie, J. M., and Casey, C. E., 1978, Copper status of New Zealanders, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 304–306, Universtät München, Freising-Weihenstephan.Google Scholar
  51. Halsted, J. A., Smith, J. C., and Irwin, M. I., 1974, A conspectus of research on zinc requirements of man, J. Nutr. 104: 345.Google Scholar
  52. Hambidge, K. M., 1974, Chromium nutrition in man, Am. J. Clin. Nutr. 27: 505.Google Scholar
  53. Hambidge, K. M., and Baum, J. D., 1972, Hair chromium concentrations of human newborn and changes during infancy, Am. J. Clin. Nutr. 25: 376.Google Scholar
  54. Hambidge, K. M., and Droegemueller, W., 1974, Changes in plasma and hair concentrations of zinc, copper, chromium, and manganese during pregnancy, Obstet. Gynecol. 44: 666.Google Scholar
  55. Hambidge, K. M., and Walravens, P. A., 1975, Trace elements in nutrition, Prac. Pediatr. 1:1. Hambidge, K. M., Rodgerson, D. O., and O’Brien, D., 1968, The concentration of chromium in the hair of normal and children with juvenile diabetes mellitus, Diabetes 17: 517.Google Scholar
  56. Hambidge, K. M., Hambidge, C., Jacobs, M., and Baum, J. D., 1972, Low levels of zinc in hair, anorexia, poor growth and hypogeusia in children, Pediatr. Res. 6: 868.CrossRefGoogle Scholar
  57. Hambidge, K. M., Walravens, P. A., Kumar, V., and Tuchinda, C., 1974, Chromium, zinc, manganese, copper, nickel, iron and cadmium concentrations in the hair of residents of Chandigarh, India and Bangkok, Thailand, in Trace Substances in Environmental Health-VIII, ( D. D. Hemphill, ed.), pp. 39–44, University of Missouri, Columbia.Google Scholar
  58. Hambidge, K. M., Neldner, K. H., and Walravens, P. A., 1975, Zinc, acrodermatitis enteropathica, and congential malformations, Lancet 1: 577–578.CrossRefGoogle Scholar
  59. Hambidge, K. M., Walravens, P. A., Brown, R. M., Webster, J., White, S., Anthony, M., and Roth, M. L., 1976, Zinc nutrition of preschool children in the Denver Head Start program, Am. J. Clin. Nutr. 29: 734.Google Scholar
  60. Hambidge, K. M., Neldner, K. H. Walravens, P. A., Weston, W. L., Silverman, A., Sabol, J. L. and Brown, R. M., 1978, Zinc in acrodermatitis enteropathica, in Zinc and Copper in Clinical Medicine,(K. M. Hambidge and B. L. Nichols, eds.), pp. 81–98, Spectrum, New York.Google Scholar
  61. Hambidge, K. M., Walravens, P. A., Casey, C. E., Brown, R. M., and Bender, C., 1979, Plasma zinc concentrations of breast-fed infants, J. Pediatr. 94: 607.CrossRefGoogle Scholar
  62. Hambidge, K. M., Walravens, P. A., Neldner, K. H., and Daugherty, N. A., 1978, Zinc, copper and fatty acids in acrodermatitis enteropathica, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 413–417, Universität München, FreisingWeihenstephan.Google Scholar
  63. Hamilton, E. J., and Minski, M. J., 1972/1973, Abundance of the chemical elements in man’s diet and possible relations with environmental factors, Sci. Total Environ. 1: 375.Google Scholar
  64. Hamilton, E. J., Minski, M. J., and Cleary, J. J., 1972/1973, The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom, Sci. Total Environ. 1: 341.Google Scholar
  65. Hart, E. B., Steenbock, H., Waddell, J., and Elvehjem, C. A., 1928, Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat, J. Biol. Chem. 77:797.Google Scholar
  66. Hauer, E. C., and Kaminski, M. V., 1978, Trace metal profiles of parenteral nutrition solutions, Am. J. Clin. Nutr. 31:264.Google Scholar
  67. Iyengar, G. V., Kollmer, W. E., and Bowen, H. J. M., 1978, The Elemental Composition of Human Tissues and Body Fluids, pp. 28, 60, 66, Verlag Chemie, Weinheim.Google Scholar
  68. James, B. E., and MacMahon, R. A., 1976, Balance studies of nine elements during complete intravenous feeding of small premature infants, Aust. Paediatr. J. 12:154.Google Scholar
  69. Jameson, S., 1976, Effects of zinc deficiency on human reproduction, Acta Med. Scand. ( Suppl. 593 ).Google Scholar
  70. Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., Greenberg, G. R., and Bruce-Robertson, A., 1977, Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition, Am. J. Clin. Nutr. 30: 531.Google Scholar
  71. Johnson, P. E., and Evans, G. W., 1978, Relative zinc availability in human breast milk, infant formulas, and cow’s milk, Am. J. Clin. Nutr. 31: 416.Google Scholar
  72. Karpel, J. T., and Peden, V. H., 1972, Copper deficiency in long-term parenteral nutrition, J. Pediatr. 8:32.Google Scholar
  73. Kasperek, K., Feinendegen, L. E., Lombeck, I., and Bremer, H. J., 1977, Serum zinc concentrations during childhood, Eur. J. Pediatr. 126:199.Google Scholar
  74. Kay, R. G., Tasman-Jones, C., Pybus, J., Whiting, R. and Black, H., 1976, A syndrome of acute zinc deficiency during total parenteral alimentation in man, Ann. Surg. 183:331.Google Scholar
  75. Kemmerer, A. R. Elvehjem, C. A., and Hart, E. B., 1931, Studies on the relation of manganese to the nutrition of the mouse, J. Biol. Chem. 92: 623.Google Scholar
  76. Klevay, L. M., 1970a, Hair as a biopsy material I. Assessment of zinc nutriture, Am. J. Clin. Nutr. 23:284.Google Scholar
  77. Klevay, L. M., 1970b, Hair as a biopsy material II. Assessment of copper nutriture, Am. J. Clin. Nutr. 23:1194.Google Scholar
  78. Klevay, L. M., 1977, Elements of ischemic heart disease, Perspect. Biol. Med. 20:196.Google Scholar
  79. Klevay, L. M., 1978, Dietary copper and the copper requirement of man, in Trace Element Metabolism in Man and Animals-3 (M. Kirchgessner, ed.), pp. 307–311, Universität München, Freising-Weihenstephan.Google Scholar
  80. Kumar, S., and Rao, K. S. J., 1973, Plasma and erythrocyte zinc levels in protein-calorie malnutrition, Nutr. Metab. 15: 364.CrossRefGoogle Scholar
  81. Lassiter, J. W., Abrams, E., Miller, W. J., Neathery, M. W., and Gentry, R. P. 1978, Role of bile and diet 54Mn metabolism in animals, in Trace Element Metabolism in Man and Animals-3 (M. Kirchgessner, ed.), pp. 140–143, Universität München, Freising-Weihenstephan.Google Scholar
  82. Leach, R. M., 1976, Metabolism and functions of manganese, in Trace Elements in Human Health and Disease, I ( A. S. Prasad, ed.), pp. 235–248, Academic Press, New York.Google Scholar
  83. Lehmann, B. H., Hansen, J. D. L., and Warren, P. J., 1971, The distribution of copper, zinc and manganese in various regions of the brain and in other tissues of children with protein-calorie malnutrition, Br. J. Nutr. 26: 197.CrossRefGoogle Scholar
  84. Levine, R. A., Streeten, D. H. P., and Doisy, R. J., 1968, Effects of oral chromium supplementation on the glucose tolerance of elderly human subjects, Metab. Clin. Exp. 17: 114.CrossRefGoogle Scholar
  85. Linder, M. C., and Munro, H. N., 1973, Iron and copper metabolism during development, Enzyme 15: 111.Google Scholar
  86. Lines, D. R., Bell, E. B., and Pybus, J., 1977, Zinc levels in childhood health and disease, Proc. Nutr. Soc. N.Z. 2 (3): 31.Google Scholar
  87. Lins, L. E., and Perhsson, K., 1976, Cobalt intoxication in uraemic myocardiopathy, Lancet 1:1191.Google Scholar
  88. Liu, V. J. K., and Morris, J. S., 1978, Relative chromium response as an indicator of chromium status, Am. J. Clin. Nutr. 31: 972.Google Scholar
  89. Lombeck, I. Schnippering, H. G., Ritzl, F., Feinendegen, L. E., and Bremer, H. J., 1975, Absorption of zinc in acrodermatitis enteropathica, Lancet 1:885.Google Scholar
  90. Lombeck, I., Kasperek, K., Harbisch, H. D., Feinendegen, L. E., and Bremer, H. J., 1977, The selenium state of healthy children I, Eur. J. Pediatr. 125: 81.CrossRefGoogle Scholar
  91. Lombeck, I., Kasperek, K., Harbisch, H. D., Becker, K., Schumann, E., Schröter, W., Feinende-gen, L. E., and Bremer, H. J., 1978, The selenium state of children II, Eur. J. Pediatr. 128: 213.Google Scholar
  92. Majaj, A. S., and Hopkins, L. L., 1966, Human chromium deficiency. The response of hypoglycemia and impaired glucose utilization to chromium (III) treatment in protein-calorie malnutrition, Leban. Med. J. 19: 177.Google Scholar
  93. Majaj, A. S., and Hopkins, L. L., 1966a, Selenium and kwashiorkor, Lancet 2: 592.CrossRefGoogle Scholar
  94. Masironi, R., Wolf, W., and Mertz, W., 1973, Chromium in refined and unrefined sugars—possible nutritional implications in the etiology of cardiovascular diseases, Bull. WHO 49: 322.Google Scholar
  95. McBean, L. D., Mahloudji, M., Reinhold, J. G., and Halsted, J. A., 1971, Correlation of zinc concentrations in human plasma and hair, Am. J. Clin. Nutr. 24: 506.Google Scholar
  96. McKenzie, J. M., 1974, Tissue concentrations of cadmium, zinc and copper from autopsy samples, N.Z. Med. J. 79:1016.Google Scholar
  97. McKenzie, J. M., 1977, Trace elements in total parenteral nutrition in New Zealand. Symposium on trace elements in human and animal health in New Zealand, pp. 59–69, Waikato University Press, Hamilton, New Zealand.Google Scholar
  98. McKenzie, R. L., Rea, H. M., Thomson, C. D., and Robinson, M. F., 1978, Selenium concentration and glutathione peroxidase activity in blood of New Zealand infants and children, Am. J. Clin. Nutr. 31: 1413.Google Scholar
  99. McLeod, B. E., and Robinson, M. F., 1972, Dietary intake of manganese by New Zealand infants during the first six months of life, Br. J. Nutr. 27: 221.CrossRefGoogle Scholar
  100. Menkes, J. H., Alter, M., Steigleder, G. K., Weakly, D. R., and Sung, J. H., 1962, A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration, Pediatrics 29: 764.Google Scholar
  101. Mertz, W., 1967, Biological role of chromium, Fed. Proc. 26: 186.Google Scholar
  102. Mertz, W., 1974, The newer essential trace elements, chromium, tin, vanadium, nickel and silicon, Proc. Nutr. Soc. 33: 307.CrossRefGoogle Scholar
  103. Mertz, W., Toepfer, E. W., Roginski, E. E., and Polansky, M. M., 1974, Present knowledge of the role of chromium, Fed. Proc. 33: 2275.Google Scholar
  104. Messer, H. H., Armstrong, W. D., and Singer, L., 1974, Essentiality and function of fluoride, in Trace Element Metabolism in Animals-2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), p. 425, University Park Press, Baltimore.Google Scholar
  105. Michie, D. D., and Wirth, F. H., 1978, Plasma zinc levels in premature infants receiving parenteral nutrition, J. Pediatr. 92: 798.CrossRefGoogle Scholar
  106. Momcilovié, B., Belonje, B., Giroux, A., and Shah, B. G., 1976, Bioavailability of zinc in milk and soy protein-based infant formulas, J. Nutr. 106: 913.Google Scholar
  107. Morris, V. C. and Levander, O. A., 1970, Selenium content of foods, J. Nutr. 100:1383.Google Scholar
  108. Myron, D. R. Givand, S. H., and Nielsen, F. H., 1977, Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy, J. Agric. Food Chem. 25: 297.Google Scholar
  109. Myron, D. R., Zimmerman, T. J., Shuler, T. R., Klevay, L. M., Lee, D. E., and Nielsen, F. H., 1978, Intake of nickel and vanadium by humans. A survey of selected diets, Am. J. Clin. Nutr. 31: 527.Google Scholar
  110. National Academy of Sciences, 1978, Zinc, Report of a Subcommittee of the National Research Council, Washington, D.C.Google Scholar
  111. National Research Council, 1970, Iodine Nutriture in the United States, National Academy of Sciences, Washington, D. C.Google Scholar
  112. National Research Council, 1980, Food and Nutrition Board, Recommended Dietary Allowances, 9th ed., National Academy of Sciences, Washington, D. C.Google Scholar
  113. Neldner, K. H., and Hambidge, K. M., 1975, Zinc therapy of acrodermatitis enteropathica, N. Engl. J. Med. 292: 870.CrossRefGoogle Scholar
  114. Newbrun, E., 1978, Dietary fluoride supplementation for the prevention of caries, Pediatrics 62: 733.Google Scholar
  115. Newman, H. A. I., Leighton, R. F., Lanese, R. R., and Freedland, N. A., 1978, Serum chromium and angiographically determined coronary artery disease, Clin. Chem. 24: 541.Google Scholar
  116. Nielson, F. H., 1974, Essentiality and function of nickel, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 381–396, University Park Press, Baltimore.Google Scholar
  117. Nielson, F. H., and Sandstead, H. H., 1974, Are nickel, vanadium, silicon, fluorine and tin essential for man? A review, Am. J. Clin. Nutr. 27: 515.Google Scholar
  118. Nielsen, F. H., Givand, S. H., and Myron, D. R., 1975, Evidence of a possible requirement for arsenic by the rat, Fed. Proc. 24: 923.Google Scholar
  119. O’Dell, B. L., 1967, Dietary interactions of copper and zinc, in Trace Substances in Environmental Health-I ( D. D. Hemphill, ed.), pp. 134–140, University of Missouri, Columbia.Google Scholar
  120. O’Dell, B. L., 1976, Biochemistry and physiology of copper in vertebrates, in Trace Elements in Human Health and Disease, II ( A. S. Prasad, ed.), pp. 391–414, Academic Press, New York.Google Scholar
  121. Ohtake, M., 1977, Serum zinc and copper levels in healthy Japanese infants, Tohoku J. Exp. Med. 123: 265.CrossRefGoogle Scholar
  122. Okada, A., Takagi, Y., Itakura, F., Satani, M., Manabe, H., and Iida, Y., 1975, Zinc deficiency during intravenous alimentation, in Proceedings of the Tenth International Congress on Nutrition, p. 236, Kyoto, Japan.Google Scholar
  123. Osis, D., Kramer, L., Wiatrowski, E., and Spencer, H., 1972, Dietary zinc intake in man, Am. J. Clin. Nutr. 25: 582.Google Scholar
  124. Parisi, A. F., and Vallee, B. L., 1969, Zinc metalloenzymes: Characteristics and significance in biology and medicine, Am. J. Clin. Nutr. 22: 1222.Google Scholar
  125. Pennington, J. T., and Calloway, D. H., 1973, Copper content of foods, J. Am. Diet. Assoc. 63:143.Google Scholar
  126. Picciano, M. F., and Guthrie, H. A., 1976, Copper, iron and zinc contents of mature human milk, Am. J. Clin. Nutr. 29: 242.Google Scholar
  127. Pories, W. J., and Strain, W. H., 1974, Zinc sulphate therapy in surgical patients, in Clinical Applications of Zinc Metabolism ( W. J. Pories, W. H. Strain, J. M. Hsu, and R. L. Woosley, eds.), pp. 139–157, Charles C Thomas, Springfield.Google Scholar
  128. Porter, H., Sweeney, M., and Porter, E. M., 1964, Neonatal hepatic mitochondrocuprein II, Arch. Biochem. Biophys. 104: 97.CrossRefGoogle Scholar
  129. Prasad, A. S., Miale, A., Fad, Z., Sandstead, H. H., and Schulert, A. R., 1963, Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism, J. Lab. Clin. Med. 61: 534.Google Scholar
  130. Prasad, A. S., Oberleas, D., Lei, K. Y., Moghissi, K. S., and Stryker, J. C., 1975, Effect of oral contraceptive agents on nutrients. 1. Minerals, Am. J. Clin. Nutr. 28: 377.Google Scholar
  131. Prasad, A. S., Brewer, G. J., Schoomaker, E. B., and Rabbani, P., 1978, Hypocupremia induced by zinc therapy in adults, J. Am. Med. Assoc. 240: 2166.CrossRefGoogle Scholar
  132. Price, N. O., Bunce, G. E., and Engel, R. W., 1970, Copper, manganese, and zinc balance in preadolescent girls, Am. J. Clin. Nutr. 23: 258.Google Scholar
  133. Punsar, S., Erämetsä, D., Karvonen, M. J., Ryhänen, A., Hilska, P., and Vomamo, H., 1975, Coronary Heart disease and drinking water, J. Chronic. Dis. 28: 259.CrossRefGoogle Scholar
  134. Punsar, S., Wolf, W., Mertz, W., and Karvonen, M. J., 1977, Urinary chromium excretion and artherosclerotic manifestations in two Finnish male populations, Ann. Clin. Res. 9: 79.Google Scholar
  135. Reinhold, J. G., 1975, Trace elements—a selective survey, Clin. Chem. 21: 476.Google Scholar
  136. Reinhold, J. G., Faradji, B., Abadi, P., and Ismail-Beigi, F., 1976, Binding of zinc to fiber and other solids of wholemeal bread, in Trace Elements in Human Health and Disease-I ( A. S. Prasad, ed.), pp. 163–180, Academic Press, New York.Google Scholar
  137. Rhead, W. J., Cary, E. E., Allaway, W. H., Saltzstein, S. L., and Schrauzer, G. N., 1972, The vitamin E and selenium status of infants and the Sudden Infant Death Syndrome, Bioinorg. Chem. 1:289.Google Scholar
  138. Ricour, C., Gros, J., Maziere, B., and Comar, D., 1975, Trace elements in infants on T.P.N., in Proceedings of the Tenth International Congress on Nutrition, p. 236, Kyoto, Japan.Google Scholar
  139. Robinson, M. F., McKenzie, J. M., Thomson, C. D., and van Rij, A. M., 1973, Metabolic balance of zinc, copper, cadmium, iron, molybdenum, and selenium in young New Zealand women, Br. J. Nutr. 30: 195.Google Scholar
  140. Robinson, M. F., Thomson, C. D., Stewart, R. D. H., Rea, H. M., and McKenzie, R. L., 1978a, Selenium in human nutrition in New Zealand residents, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 316–319, Universität München, FreisingWeihenstephan.Google Scholar
  141. Robinson, M. F., Rea, H. M., Friend, G. M., Stewart, R. D. H., Snow, P. C., and Thomson, C. D., 1978b, On supplementing the selenium intake of New Zealanders, 2, Br. J. Nutr. 39: 589.CrossRefGoogle Scholar
  142. Ronaghy, H. A., and Halsted, J. A., 1975, Zinc deficiency occurring in females. Report of two cases, Am. J. Clin. Nutr. 28: 831.Google Scholar
  143. Sakurai, H., and Tsuchiya, K., 1975, A tentative recommendation for the maximum daily intake of selenium, Environ. Physiol. Biochem. 5: 107.Google Scholar
  144. Saltman, P., Hegenauer, J., Ripley, L., and Morrison, J., 1978, Cobalt excretion test of iron bioavailability in man and mouse, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 145–148, Universtät Müchen, Freising-Weihenstephan.Google Scholar
  145. Sandstead, H. H., 1973, Zinc nutrition in the United States, Am. J. Clin. Nutr. 26: 1251.Google Scholar
  146. Sandstead, H. H., Prasad, A. S., Schulert, A. R., Fad, Z., Miale, A., Bassilly, S., and Darby, W. J., 1967, Human zinc deficiency, endocrine manifestations and response to treatment, Am. J. Clin. Nutr. 20: 422.Google Scholar
  147. Sandstead, H. H., Vokhactu, K. P., and Solomons, N., 1976, Conditioned zinc deficiencies, in Trace Elements in Human Health and Disease, I ( A. S. Prasad, ed.), pp. 33–49, Academic Press, New York.Google Scholar
  148. Saner, G., 1975, Urinary chromium excretion in the newborn and its relation to intravenous glucose loading, Nutr. Rep. In. 11: 387.Google Scholar
  149. Sarram, M., Younessi, M., Khorvash, P., Kfoury, G. A., and Reinhold, J. G., 1969, Zinc nutrition in human pregnancy in Fars province, Iran, Am. J. Clin. Nutr. 22: 726.Google Scholar
  150. Schlettwein-Gsell, D., and Mommsen-Straub, S., 1970, Übersicht spurenelemente in lebensmittel, I. Zink, Int. Z. Vitaminforsch. 40: 659.Google Scholar
  151. Schlettwein-Gsell, D., and Mommsen-Straub, S., 1971a, Übersicht Spurenelemente in Lebensmitteln III. Chrom, Int. Z. Vitaminforschung 41: 116.Google Scholar
  152. Schlettwein-Gsell, D., and Mommsen-Straub, S., 1971b, Übersicht Spurenelemente in Lebensmitteln, IV. Mangan, Int. Z. Vitaminforschung 41: 268.Google Scholar
  153. Schlettwein-Gsell, D., and Mommsen-Straub, S., 1971c, Übersicht Spurenelemente in Lebensmitteln VI. Kupfer, Int. Z. Vitaminforschung 41: 554.Google Scholar
  154. Schrauzer, G. N., 1976, Selenium and cancer: A review, Bioinorg. Chem. 5: 275.CrossRefGoogle Scholar
  155. Schroeder, H. A., and Balassa, J. J., 1965, Influence of chromium, cadmium and lead on rat aortic lipids and circulating cholesterol, Am. J. Physiol. 209: 433.Google Scholar
  156. Schroeder, H. A., Balassa, J. J., and Tipton, I. H., 1962, Abnormal trace metals in man: Chromium, J. Chronic Dis. 15: 941.CrossRefGoogle Scholar
  157. Schroeder, H. A., Balassa, J. J., and Tipton, I. H., 1966, Essential trace metals in man: Manganese, J. Chronic Dis. 19: 545.Google Scholar
  158. Schroeder, H. A., Frost, D. V., and Balassa, J. J., 1970, Essential trace metals in man: Selenium, J. Chronic Dis. 23: 227.CrossRefGoogle Scholar
  159. Schwarz, K., 1961, Development and status of experimental work on Factor 3-selenium, Fed. Proc. 20: 666.Google Scholar
  160. Schwarz, K., 1974, New essential trace elements (Sn,V,F,Si): Progress report and outlook, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 355–380, University Park Press, Baltimore.Google Scholar
  161. Schwarz, K., and Foltz, C. M., 1957, Selenium as an integral part of Factor 3 against dietary necrotic liver degeneration, J. Am. Chem. Soc. 79: 3292.CrossRefGoogle Scholar
  162. Schwarz, K., and Mertz, W., 1959, Chromium III and the glucose tolerance factor, Arch. Biochem. Biophys. 85: 292.CrossRefGoogle Scholar
  163. Seelig, M. S., 1972, Review: Relation of copper and molybdenum to iron metabolism, Am. J. Clin. Nutr. 25:1022.Google Scholar
  164. Seely, J. R., Humphrey, G. B. and Matter, B. J., 1972, Copper-deficiency in a premature infant fed an iron-fortified formula, N. Engl. J. Med. 286:109.Google Scholar
  165. Sever, L. S., 1973, Zinc deficiency in man, Lancet 1: 887.CrossRefGoogle Scholar
  166. Smit, Z. N., and Pretorius, P. J., 1964, Studies in metabolism of zinc, J. Trop. Pediatr. 9:105.Google Scholar
  167. Smith, J. E., Brown, E. D., and Smith, J. C., 1974, The effect of zinc deficiency on the metabolism of retinol-binding protein in the rat, J. Lab. Clin. Med. 84: 692.Google Scholar
  168. Soman, S. D., Panday, V. K., Joseph, K. T., and Raut, S. J., 1969, Daily intake of some major and minor trace elements, Health Phys. 17: 36.Google Scholar
  169. Spencer, H., Osis, D., Krammer, L., and Norris, C., 1976, Intake, excretion, and retention of zinc in man, in Trace Elements in Human Health and Disease, 1 ( A. S. Prasad, ed.), pp. 345–361, Academic Press, New York.Google Scholar
  170. Stewart, R. D. H. Griffiths, N. M., Thomson, C. D., and Robinson, M. F., 1978, Quantitative selenium metabolism in normal New Zealand women, Br. J. Nutr. 40:45.Google Scholar
  171. Sunderman, F. W., Nomoto, S., Morang, R., Nechay, M. W., Burke, C. N., and Nielsen, S. W., 1972, Nickel deprivation in chicks, J. Nutr. 102: 259.Google Scholar
  172. Tao S., and Suttie, J. W., 1976, Evidence for a lack of an effect of dietary fluoride levels on reproduction in mice, J. Nutr. 106:115.Google Scholar
  173. Taylor, A., and Marks, V., 1978, Cobalt: a review, J. Human Nutr. 32:165.Google Scholar
  174. Thomas, B., Roughan, J. A., and Watters, E. D., 1974, Cobalt, chromium and nickel content of some vegetable foodstuffs, J. Sci. Food Agric. 25: 771.CrossRefGoogle Scholar
  175. Thompson, J. N., Erdody, P. and Smith, D. C., 1975, Selenium content of foods consumed by Canadians, J. Nutr. 105:274.Google Scholar
  176. Thomson, C. D., Rea, H. M., Doesburg, V. M., and Robinson, M. F., 1977, Selenium concentrations and glutathione peroxidase activities in whole blood of New Zealand residents, Br. J. Nutr. 37: 457.CrossRefGoogle Scholar
  177. Todd, W. R., Elvehjem, C. A., and Hart, E. M., 1934, Zinc in the nutrition of the rat, Am. J. Physiol. 107: 146.Google Scholar
  178. Toepfer, E. W., Mertz, W., Roginski, E. E., and Polansky, M. M., 1973, Chromium in foods in relation to biological activity, J. Agric. Food Chem. 21: 69.CrossRefGoogle Scholar
  179. Tsongas, T. A., Meglen, R. R., Walravens, P. A., and Chappell, W. R., 1980, Molybdenum in the diet: an estimate of average daily intake in the United States, Am. J. Clin. Nutr. 33: 1103.Google Scholar
  180. Underwood, E. J., 1971, Trace Elements in Human and Animal Nutrition, 3rd ed., pp. 208, 226–231, 323–362, Academic Press, New York.Google Scholar
  181. Underwood, E. J., 1977, Trace Elements in Human and Animal Nutrition, 4th ed., Academic Press, New York.Google Scholar
  182. Van Campen, D., 1970, Competition between copper and zinc during absorption, in Trace Element Metabolism in Animals-1 (C. F. Mills, ed.), pp. 287–298, E. und S. Livingstone, Edinburgh. van Rij, A. M., and McKenzie, J. M., 1977, Zinc in parenteral nutrition, Proc. Nutr. Soc. N. Z. 2 (3): 87.Google Scholar
  183. Versieck, J., Hoste, J., Barbier, F., and Vanballenberghe, L., 1976, Serum cobalt, Lancet 1:1403.Google Scholar
  184. Versieck, J., Hoste, J., Barbier, F., Vanballenberghe, L., de Rudder, J., and Cornelius, R., 1978, Determination of molybdenum in human serum by neutron activiation analysis, Clin. Chim. Acta 87: 135.CrossRefGoogle Scholar
  185. Viltner, R. W., Bozian, R. C., Hess, E. V., Zellner, D. C., and Petering, H. G., 1974, Manifestations of copper deficiency in a patient with systemic sclerosis on intravenous alimentation, N. Engl. J. Med. 291: 188.CrossRefGoogle Scholar
  186. Walravens, P. A., and Hambidge, K. M., 1976, Growth of infants fed a zinc supplemented formula, Am. J. Clin. Nutr. 29: 1114.Google Scholar
  187. Walravens, P. A., and Hambidge, K. M., 1978, Zinc nutrition and deficiency in pediatrics, in Zinc and Copper in Clinical Medicine ( K. M. Hambidge and B. L. Nichols, eds.), pp. 49–58, Spectrum, New York.Google Scholar
  188. Walravens, P. A., Moure, R., Solomons, C. C., Chappell, W. R., and Bentley, G., 1978, Biochemical changes in workers exposed to molybdenum dusts, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 577–581. Universität München, FreisingWeihenstephan.Google Scholar
  189. Waslien, C. I., 1976, Human intake of trace elements, in Trace Elements in Human Health and Disease, II ( A. S. Prasad, ed.), pp. 347–370, Academic Press, New York.Google Scholar
  190. Wayne, E. J., Koutras, D. A., and Alexander, W. D., 1964, Clinical Aspects of Iodine Metabolism, Blackwell, Oxford.Google Scholar
  191. WHO, 1973, Trace Elements in Human Nutrition,World Health Organization Technical Report Series No. 532.Google Scholar
  192. Widdowson, E. M., Dauncey, M. J., and Shaw, J. C. L., 1974, Trace elements in foetal and early postnatal development, Proc. Nutr. Soc. 33: 275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Clare E. Casey
    • 1
  • K. Michael Hambidge
    • 1
  1. 1.Department of PediatricsUniversity of Colorado Medical CenterDenverUSA

Personalised recommendations