Skip to main content

Degenerate Four-Wave Mixing Technique for Studying Very Fast Radiationless Processes in Very Short Time Scale

  • Chapter
Advances in Nonradiative Processes in Solids

Part of the book series: NATO ASI Series ((NSSB,volume 249))

  • 190 Accesses

Abstract

The standard transient grating experiment enables to measure relaxation times longer than the laser pulse duration. We enumerate the different mechanisms which can be investigated and show how powerful this method is. A counter part is that one has to know much about the physics of the system in order to interpret the experimental results.

A second unconventional method of performing a four-wave mixing (FWM) experiment is sensitive to the coherence induced between states. In a two-level system, it measures transverse relaxation time T2 and allows a resolution time only limited by the coherence time of the laser, (which can be < 10fs). Our results obtained on a dye molecule, which is not a two-level system are not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Siegman, J. Opt. Soc. Am. 67, 545 (1977).

    Article  Google Scholar 

  2. K. Jarasiun, F. Vaitkus Phys. Stat. Sol. (a) 44, 793 (1977).

    Article  Google Scholar 

  3. M.D. Fayer, Picosecond Phenomena III, Springer Series in Chemical Physics, 23 (Springer Verlag 1982 ).

    Google Scholar 

  4. D.R. Lutz, K.A. Nelson, C.R. Gochanour, M.D. Fayer, Chem. Phys. 58, 225 (1981).

    Article  Google Scholar 

  5. Y.R. Shen, The Principles of Nonlinear Optics, edited by John Wiley & Sons, (New York 1984 ).

    Google Scholar 

  6. J.R. Salcedo, A.E. Siegmann, D.D. Dlott, M.D. Fayer, Phys. Rev. Lett., 41, 131 (1978).

    Article  ADS  Google Scholar 

  7. H.J. Eichler, P. Gunter, D.W. Pohl, Laser Induced Dynamics Gratings, Springer Verlag, Berlin, (1986).

    Google Scholar 

  8. K.A. Nelson, D.R. Lutz, M.D. Fayer, L. Madison, Phys. Rev. B 24, 3261 (1981).

    Article  ADS  Google Scholar 

  9. M.D. Fayer, IEEE J. Quant. Electron. QE22 1437 (1986).

    Google Scholar 

  10. D.C. Auth, Appl. Phys. Lett., 16, 511 (1970).

    Google Scholar 

  11. H. Eichler, G.L. Salga, H. Stahl, J. Appl. Phys. 44, 5383 (1973).

    Article  ADS  Google Scholar 

  12. H. Eichler, H. Stahl, J. Appl. Phys. 44, 3429 (1973).

    Article  ADS  Google Scholar 

  13. R.I. Scarlett, Phys. Rev A, 6, 2281 (1972).

    Article  ADS  Google Scholar 

  14. M. Chester, Phys. Rev., 131, 2013 (1963).

    Article  ADS  Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics, p.131, ed. John Wiley & Sons, 3rd edition.

    Google Scholar 

  16. L. Landau, J. Phys. USSR, 5, 71 (1941).

    Google Scholar 

  17. D.W. Pohl, S.E. Schwarz, Phys. Rev. B, 7, 2735 (1973).

    Article  ADS  Google Scholar 

  18. R.J. Manning, A. Miller, D.W. Crust, K. Woodbridge, Optics Lett., 13, 868 (1988).

    Article  ADS  Google Scholar 

  19. R.C. Powell, A. Suchocki, F.M. Durville, G.D. Gilliland, E.G. Behrens, G.J. Quarlesn, G. Boulon, J. de Phys. (Paris), colloque-C7, 48, C7–417 (1987).

    Google Scholar 

  20. A Suchocki, G.D. Gilliland, R.C. Powell, Phys. Rev. B, 35, 5830 (1987).

    Article  Google Scholar 

  21. R.C. Powell, J. de Physique (Paris), 46, C7–403 (1985).

    Google Scholar 

  22. G.D. Gilliland, A. Suchocki, K.W. Ver Steg, R.C. Powell, Phys. Rev. B, 38, 6227 (1988).

    Article  ADS  Google Scholar 

  23. A Blumen, J. Klafter, G. Zumofen, Optical Spectroscopy of Glasses, p. 199–265, ed. I. Zschokke, D. Reidel publsihing company, (1986).

    Google Scholar 

  24. D. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  25. M. Inokuti, F. Hirayama, J. Chem. Phys., 43, 1978 (1965).

    Google Scholar 

  26. P. Evesque, The Fractal Approach to Heterogeneous Chemistry, p. 81–103, ed. D. Avnir, John Wiley & Sons Ltd. (1989).

    Google Scholar 

  27. A. Blumen, J. Manz, J. Chem. Phys., 71, 4694 (1979).

    Article  ADS  Google Scholar 

  28. P.G. de Gennes, J. Chem. Phys., 76, 3316 (1982).

    Article  ADS  Google Scholar 

  29. P. Evesque, J. de Phys. (Paris), 44, 1217 (1983).

    Article  Google Scholar 

  30. T. Tao, Biopolymers, 8, 609 (1969).

    Article  Google Scholar 

  31. F. Perrin, J. Physique Radium V II, 5, 497 (1934)

    Google Scholar 

  32. B.S. Wherrett, A.L. Smirl, T.F. Bogges, IEEE J. Quant. Electron., QE-19, 680 (1983).

    Google Scholar 

  33. M.T. Portella, P. Montelmacher, A. Bourdon, P. Evesque, J. Duran, J. PHys., CC−1, 981 (1989).

    Google Scholar 

  34. S. Havlin, D. Ben-Avraham, Adv. in Phys. 36, 695–798 (1987).

    Google Scholar 

  35. P. Evesque, J. Duran, A. Bourdon, J. Phys. C, 18, 2643 (1985).

    Article  ADS  Google Scholar 

  36. B.B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension, Flammarion, Paris (1977).

    Google Scholar 

  37. S. Alexander, R. Orbach, J. de Physique (Paris) Lett., 43, L625 (1983).

    Article  Google Scholar 

  38. R. Rammal, G. Toulouse, J. de Physique (Paris) Lett., 43, L625 (1983).

    Google Scholar 

  39. P.G. de Gennes, C.R. Acad. Sci. (Paris), 296, Ser. II, 881 (1983).

    Google Scholar 

  40. W.D. Dozier, J.M. Drake, J. Klafter, Phys. Rev. Lett., 56, 197 (1986).

    Article  ADS  Google Scholar 

  41. P. Evesque, J. Duran, A. Bourdon, J. Phys. C, 18, 2643 (1985).

    Article  ADS  Google Scholar 

  42. P. Evesque, J. Duran, A. Bourdon, J. de Physique (Paris), 46, C7–45 (1985).

    Google Scholar 

  43. D. Stauffer, Phys. Rep., 54, 1 (1979).

    Article  ADS  Google Scholar 

  44. H. Nakatsuka, H. Tornita, M. Fujiwara, S. Asaka, Opt. Commun., 52, 150 (1984).

    Article  ADS  Google Scholar 

  45. S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, Phys. Rev. A, 29, 2286 (1984).

    Article  ADS  Google Scholar 

  46. A.M. Weiner, S. de Silvestri, E.P. Ippen, J. Opt. Soc. AM. B, 2, 654 (1985).

    Article  ADS  Google Scholar 

  47. S. de Sivestri, A.M. Weiner, F.G. Fujimoto, E.P. Ippen, Chem. Phys. Lett., 112 195 (1984).

    Google Scholar 

  48. H. Nakatsuka, M. Fujiwara, R. Kuroda, J. de Physique (Paris), 46, C7–511 (1985).

    Google Scholar 

  49. M. Fujiwara, R. Kuroda, H. Nakatsuka, J. Opt. Soc. Am. B, 2, 1634 (1985).

    Article  ADS  Google Scholar 

  50. M.T. Portella, P. Montelmacher, A. Bourdon, P. Evesque, J. Duran, J. Phys. Chem., 91, 3715 (1987).

    Article  Google Scholar 

  51. J.E. Golub, T.W. Mossberg, J. Opt. Soc. Am. B, 3, 554 (1986).

    Article  ADS  Google Scholar 

  52. R. Zhang, X. Mi, H. Zhou, P. Ye, Opt. Comm., 67, 446 (1988).

    Article  ADS  Google Scholar 

  53. N. Morita, T. Yajima, Phys. Rev. A, 30, 2525 (1984).

    Article  ADS  Google Scholar 

  54. X. Mi, H. Zhou, R. Zhang, P. Ye., J. Opt. Soc. Am. B, 6, 184 (1989).

    Article  ADS  Google Scholar 

  55. J.P. Lavoine, A. Boeglin, S.H. Lin, A.A. Villaeys, Phys. Rev. A, 38, 2896 (1988).

    Article  ADS  Google Scholar 

  56. R. Trebino, Phys. Rev. A, 38, 2921 (1988).

    Google Scholar 

  57. P. Ye, Y. R. Shen, PHys. Rev. A, 25, 2183 (1982).

    Article  ADS  Google Scholar 

  58. T. Yajima, H. Souma, Phys. Rev. A, 17, 309 (1978).

    Article  ADS  Google Scholar 

  59. B. Hönerlage, M. Frindi, J. Miletic, Phys. Stat. Sol. (b), 149, 775 (1988).

    Article  ADS  Google Scholar 

  60. M.A. Dupertuis, R.R.E. Salomaa, J. Opt. Soc. Am. B, 5, 130 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evesque, P. (1991). Degenerate Four-Wave Mixing Technique for Studying Very Fast Radiationless Processes in Very Short Time Scale. In: Di Bartolo, B. (eds) Advances in Nonradiative Processes in Solids. NATO ASI Series, vol 249. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4446-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4446-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3219-8

  • Online ISBN: 978-1-4757-4446-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics