Thermal Response and Decoupling of Excitations at Low Temperatures

  • M. J. Graf
Part of the NATO ASI Series book series (NSSB, volume 249)


The manner in which the interactions (‘coupling’) between excitations in solids (for example, phonons and electrons) vary with parameters such as temperature or magnetic field not only gives information on the density of states, but can also provide for novel measurements of specific heat of a single set of excitations. The particular example of a two-dimensional electron gas confined to a GaAs-AlGaAs single quantum well is discussed, along with preliminary measurements on the decoupling of electrons and phonons in magnetic field at low temperatures.


Heat Capacity Electron Temperature Strong Magnetic Field Landau Level Resistive Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Graf, B.B. Goldberg, J.S. Brooks, and M. Heiblum, Proceedings of the 19th International Conference on hte Physics of Semiconductors, p.185, W. Zawadzki, ed. ( Polish Academy of Sciences, Warsaw, 1988 ).Google Scholar
  2. 2.
    P.F. Sullivan and G. Seidel, Physical Review 173 679 (1968).Google Scholar
  3. 3.
    A similar technique is described by D.C. Glattli, E.Y. Andrei, and F.I.B. Williams, Phys. Rev. Lett. 60, 420 (1988).CrossRefGoogle Scholar
  4. 4.
    For a review see The Quantum Hall Effect, R.E. Prange and S.M. Girvin eds. (Springer-Verlag, New York 1987).Google Scholar
  5. 5.
    A.H. MacDonald, H.C.A. Oji, and K.L. Liu, Phys. Rev. B34 (1986).Google Scholar
  6. 6.
    For example, see M. Prasad and M. Singh, Rev. B29 4803 (1984).Google Scholar
  7. 7.
    J.P. Eisenstein, A.C. Gossard, and V. Narayanamurti, Phys. Rev. Lett. 59, 1341 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    See for example, the work presented by D. Bimberg in this volume.Google Scholar
  9. 9.
    B.B. Goldberg, D. Heiman, M.J. Graf, D.A. Broido, A. Pinczuk, C.W. Tu, J.H. English, and A.C. Gossard, Phys, Rev. B38, 10131 (1988).CrossRefGoogle Scholar
  10. 10.
    For example, see S. Prasad, H.P. Wei, D.C. Tsui, W. Schlapp, and G. Weimann, J. Appl. Phys. 63, 1793 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    A.K.M. Wennberg, S.N. Ytterboe, C.M. Gould, H.M. Bozler, J. Klem, and H. Morkoc, Phys. Rev. B34 4409 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    V. Lounasmaa, Experimental Principles and Methods Below 1K,( Academic Press, London, 1974 ).Google Scholar
  13. 13.
    E. Gornik, R. Lassnig, G. Strasser, H.L. Stormer, A.C. Gossard, and W. Weigmann, Phys. Rev. Lett. 54, 1820 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    J.K. Wang, J.H. Campbell, D.C. Tsui, and A.Y. Cho, Phys. Rev. B38, 6174 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    P.J. Price, J. Appl. Phys. 53, 6863 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. J. Graf
    • 1
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations