Non-Radiative Relaxation of Solids: Different Pathways to the Ground State

  • B. Canny
  • D. Curie
Part of the NATO ASI Series book series (NSSB, volume 249)


Non-radiative processes are a very general item, and they may occur equally well in gases, liquids, or solids. Here we are specifically interested in electronic radiationless processes in solids. The most important example is radiationless deactivation of the excited state, but phonon absorption for instance can also lead to an upper electronic state. In the simplest case, radiative and non-radiative transitions compete and occur in the same ion or more generally within the same luminescent center (“one-center processes”). As pointed out by Struck and Fonger, the case of a low phonon coupling typically leads to the so-called “exponential energy gap” law for multiphonon transitions, while the case of a strong phonon coupling often leads to a Mott-Seitz type law in the temperature range of interest i.e. an activation energy followed by a cascade phonon emission process. However, these authors realized that even when this law fits correctly the experimental results, the activation energy involved in the Mott-Seitz formula is not necessarily equal to the height of the crossing point of the configurational curves. The reason for this discrepancy is that the conventional Mott-Seitz process actually occurs only in the limiting case of very high temperatures, while at lower temperatures tunneling from low vibrational levels in the excited state to the ground state may occur.

In addition, even if radiationless transitions can be predicted to occur between the emitting excited state and the ground state, often the quenching processes involve excitation via one or several other excited levels (for instance this is the case in thermal quenching of ruby).

Both the number of emitted (or absorbed) phonons, and the strength of the coupling constant, are to be considered as well. Kun Huang has shown that the pathway to the ground state involves, in some cases the highest energy phonons, in other cases the largest coupling constant or the mean value of the phonon distribution. As a matter of fact, any specific case must be studied separately.

More intricate pathways take place, in which radiationless transitions occur via some kind of energy transfer from the excited center to a “Killer center”. The mechanism of impurity poisoning in conventional II – VI or III – V phosphors is not yet clear, but important progresses have been made in the recent years. Transfers have been shown to occur towards a center which emits I.R. photons for absorbed U.V. or visible exciting radiation.

Some attention is also given to trapping processes and Auger effects in semi-conducting luminescent materials. Characteristic examples of these items are discussed shortly.


Thermal Quenching Thermal Activation Energy Auger Effect Radiationless Transition Nonradiative Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Perrin, Thesis, Ann. de Phys., 12, 169 (1929).Google Scholar
  2. 2.
    R. Delorme and F. Perrin, J. Physique, 10, 177 (1929).Google Scholar
  3. 3.
    B. Henderson, Optical Spectroscopy of Colour Centers, in Spectroscopy of Solid State Laser Type Materials B. Di Bartolo ed., Plenum Press, 1987, p. 112–113.Google Scholar
  4. 4.
    R.K. Swank and F.C. Brown, Phys. Rev. 130, 34 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    H.G. Drickamer, G.B. Schuster, D.S. Mitchell, in Radiationless Transitions S.H. Lin ed., Academic Press 1980, p. 289.Google Scholar
  6. 6.
    C.E. Tyner and H.G. Drickamer, J. Chem. Phys., 67, 4103 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    G.L. House and H.G. Drickamer, J. Chem. Phys., 67, 3321 (1977).Google Scholar
  8. 8.
    M. Tabei, S. Shionoya, H. Ohmatsu, J. Appl. Phys., 14, 240 (1975).CrossRefGoogle Scholar
  9. 9.
    M. Godlewski, W.E. Lamb, B.C. Cavenett, J. Phys. C., 15, 3925 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    M. Godlewski and M. Scowronski, Phys. Rev., B 32, 4007 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    A. Von Hippel, Zeitschrift für Phys., 101, 680 (1936).ADSCrossRefGoogle Scholar
  12. 12.
    F. Seitz, Trans. Faraday. Soc., 35, 74 (1939).Google Scholar
  13. 13.
    N.F. Mott, Proc. Roy. Soc., A, 167, 384 (1938).Google Scholar
  14. 14.
    N.F. Mott, Electronic Processes in Ionic Crystals Clarendon Press, Oxford (1940).Google Scholar
  15. 15.
    W.H. Fonger and C.W. Struck, in Radiationless Processes B. Di Bartolo ed., Plenum Press 1980, p. 475.Google Scholar
  16. 16.
    C.W. Struck and W.H. Fonger, J. of Luminescence, 10, 1, (1975).ADSCrossRefGoogle Scholar
  17. 17.
    W.H. Fonger and C.W. Struck, J. of Luminescence, 17, 241, (1978).ADSCrossRefGoogle Scholar
  18. 18.
    C.W. Struck and W.H. Fonger, J. of Luminescence, 18–19 101 (1979).Google Scholar
  19. 19.
    C.W. Struck and W.H. Fonger, Phys. Rev., B 19, 4400 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    C.W. Struck and W.H. Fonger, J. Chem. Phys., 60, 1988 (1974).Google Scholar
  21. 21.
    D.L. Decter, Solid State Phys., 6, 355 (1958).Google Scholar
  22. 22.
    R.H. Bartram and A.M. Stoneham, Solid State Comm., 17, 1593 (1975).Google Scholar
  23. 23.
    A.M. Stoneham and R.H. Bartram, Solid State Electron, 21, 1325 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    T. Kloiber, H.J. Kmeicik, M. Kruse, M. Schreiber and G.Zimmerer, J. of Luminescence, 40–41 593 (1988).Google Scholar
  25. 25.
    T. Kloiber, W. Laasch, G. Zimmerer, F. Coletti and J.M. Debever, Europhys. Lett. 7, 77 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    T. Kloiber and G. Zimmerer, Radiation Effects and Defects in Solids 1989 (in press).Google Scholar
  27. 27.
    W.H. Fonger and C.W. Struck, Phys. Rev. B 11. 3215 (1975).CrossRefGoogle Scholar
  28. 28.
    G. Blasse, in Radiationless Processes B. Di Bartolo ed., Plenum Press 1980, p. 316.Google Scholar
  29. 29.
    C.W. Struck and W.H. Fonger, J. Chem. Phys. 64, 1784 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    G. Blasse and N. Sabbatini, Materials Chem. and Phys., 16, 237 (1987).CrossRefGoogle Scholar
  31. 31.
    F. Auzel, in Radiationless Processes B. Di Bartolo ed., Plenum Press 1980, p. 213.Google Scholar
  32. 32.
    L.A. Risberg, in Radiationless Processes B. Di Bartolo ed., Plenum Press 1980, p. 369.Google Scholar
  33. 33.
    M.J. Weber, Phys. Rev. B8, 54 (1973).ADSCrossRefGoogle Scholar
  34. 34.
    R. Reisfeld, in Radiationless Processes B. Di Bartolo ed., Plenum Press 1980, p. 489.Google Scholar
  35. 35.
    K. Huang, J. of Luminescence, 31–32 738 (1984).Google Scholar
  36. 36.
    H.W. Moos, J. of Luminescence, 11=2, 106 (1970).Google Scholar
  37. 37.
    W. Jia and W.M Yen, Acta Phys. Sin., 32, 346 (1983).Google Scholar
  38. 38.
    J.H. Crasemann and H.J. Schulz, in Defects in Semi-Conductors (H.J. Von Bardeleben ed.), Materials Science Forum, 10–12 693 (1986).Google Scholar
  39. 39.
    M. Jaros, Deep Levels in Semi-conductors Adam Hílger Ltd., Bristol 1982, pp. 180–190.Google Scholar
  40. 40.
    M. Lax, J. Chem. Phys., 20, 1752 (1952).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    M. Lax, Phys. Rev. 119, 1502 (1960).ADSCrossRefGoogle Scholar
  42. 42.
    V.N. Abakumov, V.I. Perel, I.N. Yassievich, Sov. Phys. Semi-Cond., 12, 1 (1978).Google Scholar
  43. 43.
    R.Kubo, Phys. Rev. 86, 929 (1952).Google Scholar
  44. 44.
    H. Sumi, J. of Luminescence, 40–41 76 (1988).Google Scholar
  45. 45.
    P.T. Landsberg and D.J. Robbins, Solid State Electr., 21, 1289 (1978).Google Scholar
  46. 46.
    N.T. Gordon and J.W. Allen, J. Phys. D., Appl. Phys. 18, 951 (1985).ADSCrossRefGoogle Scholar
  47. 47.
    S.G. Ayling and J.W. Allen, J. Phys. C., 20, 4251 (1987).ADSCrossRefGoogle Scholar
  48. 48.
    L.D. Merkle, I.L. Spain and R.C. Powell, J. Phys. 14, 2027 (1981).ADSGoogle Scholar
  49. 49.
    V. Urosevic, B. Panic, B. Jovanic, L.J. Zekovic, P. Savic, Chem. Phys. Lett. 155, 325 (1989).ADSCrossRefGoogle Scholar
  50. 50.
    E.H. Bottcher, K. Ketterer, D. Bimberg, G. Weiman, W. Schapp, Appl. Phys. Lett., 50, 1074 (1987).ADSCrossRefGoogle Scholar
  51. 51.
    B. Sermage, M.F. Pereira, F. Alexandre, T. Beerens, R. Azoulay, C. Tallot, A.M. Jean-Louis, D. Meichenin, J. Physique, Colloque C5, 135 (1987).Google Scholar
  52. 52.
    M. Bancie-Grillot and P. Bourtayre, J. Physique, Colloque C2, 116 (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. Canny
    • 1
  • D. Curie
    • 1
  1. 1.Laboratoire de Physique des Milieux CondensésUniversité Paris VIParis Cedex 05France

Personalised recommendations