Skip to main content

Effects of Cardiac Work and Leucine on Protein Turnover

  • Chapter
Book cover Advances in Myocardiology

Abstract

The purpose of these experiments was to assess effects of cardiac work and leucine in hearts supplied only glucose or substrate and hormone mixtures that simulated plasma. Rates of protein degradation greatly exceeded protein synthesis in Langendorff preparations supplied glucose. This severely negative nitrogen balance was brought closer to zero by provision of more complete substrate mixtures. Cardiac work further improved the nitrogen balance by stimulating protein synthesis in hearts supplied glucose (mixture 1), glucose-insulin-glucagon-lactate-β-hydroxybutyrate (mixture 2), or palmitate-β-hydroxybutyrate-glucose (mixture 3) and inhibiting protein degradation in hearts supplied glucose. Cardiac work did not affect the rates of either protein synthesis or degradation in hearts provided insulin-lactate-glucose (mixture 4). The increase in protein synthesis was associated with increased rates of peptide chain initiation. Addition of 1 mM leucine had an additional effect to restore nitrogen balance to zero or to achieve positive balance in working hearts supplied substrate and hormone mixture 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buse, M. G., Atwell, R., and Mancusi, V. 1979. In vitro effect of branched chain amino acids on the ribosomal cycle in muscles of fasted rats. Horm. Metab. Res. 11:289–292.

    CAS  Google Scholar 

  2. Chua, B., Siehl, D. L., Fuller, E. O., and Morgan, H. E. 1980. Branch chain amino acids and protein turnover in heart. In: Fourth USA-USSR Symposium on Myocardial Metabolism, pp. 305–324. U.S. Dept. of Health and Human Services (NIH Publication No. 80–2017), Bethesda.

    Google Scholar 

  3. Chua, B. L., Siehl, D. L., and Morgan, H. E. 1979. Effect of leucine and metabolites of branched-chain amino acids on protein turnover in heart. J. Biol. Chem. 254:8358–8362.

    PubMed  CAS  Google Scholar 

  4. Chua, B., Siehl, D. L., and Morgan, H. E. 1980. A role for leucine in the regulation of protein turnover in working rat hearts. Am. J. Physiol. 239:E510–E514.

    PubMed  CAS  Google Scholar 

  5. Chua, B., Watkins, C., Siehl, D. L., and Morgan, H. E. 1978. Effect of epinephrine and glucagon on protein turnover in perfused rat heart. Fed. Proc. 37:540.

    Google Scholar 

  6. Hems, R., Ross, B. D., Berry, M. N., and Krebs, H. A. 1966. Gluconeogenesis in the perfused rat liver. Biochem. J. 101:284–292.

    PubMed  CAS  Google Scholar 

  7. Hjalmarson, Å. C., and Isaksson, O. 1972. In vitro work load and rat heart metabolism. I. Effect of protein synthesis. Acta Physiol. Scand. 86:126–144.

    Article  PubMed  CAS  Google Scholar 

  8. Hjalmarson, Å. C., and Isaksson, O. 1972. In vitro work load and rat heart metabolism. IV. Effect on ribosomal aggregation. Acta Physiol. Scand. 86:342–352.

    Article  PubMed  CAS  Google Scholar 

  9. Kao, R., Rannels, D. E., Whitman, V., and Morgan, H. E. 1978. Factors accounting for growth and atrophy of the heart. In: T. Kobayashi, Y. Ito, and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 12: Cardiac Adaptation, pp. 105–113. University Park Press, Baltimore.

    Google Scholar 

  10. Lamprecht, W. I., and Trautschold, I. 1965. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: H. U. Bergmeyer (ed.), Methods of Enzymatic Analysis, pp. 543–551. Academic Press, New York.

    Google Scholar 

  11. McKee, E. E., Cheung, J. Y., Rannels, D. E., and Morgan, H. E. 1978. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J. Biol. Chem. 253:1030–1040.

    PubMed  CAS  Google Scholar 

  12. Millward, D. J. 1980. Protein turnover in skeletal and cardiac muscle during normal growth and hypertrophy. In: K. Wildenthal (ed.), Degradation Processes in Heart and Skeletal Muscle, pp. 161–199. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  13. Morgan, H. E., Chua, B. H. L., Fuller, E. O., and Siehl, D. L. 1980. Regulation of protein synthesis and degradation during in vitro cardiac work. Am. J. Physiol. 238:E431–E442.

    PubMed  CAS  Google Scholar 

  14. Morgan, H. E., Earl, D. C. N., Broadus, A., Wolpert, E. B., Giger, K. E., and Jefferson, L. S. 1971. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J. Biol. Chem. 246:2152–2162.

    PubMed  CAS  Google Scholar 

  15. Morgan, H. E., Jefferson, L. S., Wolpert, E. B., and Rannels, D. E. 1971. Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J. Biol. Chem. 246:2163–2170.

    PubMed  CAS  Google Scholar 

  16. Neely, J. R., Liebermeister, H., Battersby, E. J., and Morgan, H. E. 1967. Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212:804–814.

    PubMed  CAS  Google Scholar 

  17. Rannels, D. E., Hjalmarson, Å. C., and Morgan, H. E. 1974. Effects of non-carbohydrate substrates on protein synthesis in muscle. Am. J. Physiol. 226:528–539.

    PubMed  CAS  Google Scholar 

  18. Rannels, D. E., Kao, R., and Morgan, H. E. 1975. Effect of insulin on protein turnover in heart muscle. J. Biol. Chem. 250:1694–1701.

    PubMed  CAS  Google Scholar 

  19. Schreiber, S. S., Briden, K., Oratz, M., and Rothschild, M. A. 1966. Protein synthesis in the overloaded heart. Am. J. Physiol. 211:314–318.

    PubMed  CAS  Google Scholar 

  20. Schreiber, S. S., Oratz, M., Evans, C., Reff, F., Klein, I., and Rothschild, M. A. 1973. Cardiac protein degradation in acute overload in vitro. Reutilization of amino acids. Am. J. Physiol. 224:338–345.

    PubMed  CAS  Google Scholar 

  21. Sherwin, R. S. 1978. Effect of starvation on the turnover and metabolic response to leucine. J. Clin. Invest. 61:1471–1481.

    Article  PubMed  CAS  Google Scholar 

  22. Taegtmeyer, H., Hems, R., and Krebs, H. A. 1980. Utilization of energy-providing substrates in the isolated working rat heart. Biochem. J. 186:701–711.

    PubMed  CAS  Google Scholar 

  23. Zak, R., Martin, A. F., Reddy, M. K., and Rabinowitz, M. 1976. Control of protein balance in hypertrophied cardiac muscle. Circ. Res. 38(Suppl. 1): 145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chua, B., Siehl, D.L., Fuller, E.O., Morgan, H.E. (1983). Effects of Cardiac Work and Leucine on Protein Turnover. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics