Skip to main content

Adaptive and Pathological Alterations in Experimental Cardiac Hypertrophy

  • Chapter

Abstract

Based on investigations of various models of experimental cardiac hypertrophy (renal hypertension, spontaneous hypertension, aortic stenosis, swimming training, thyrotoxicosis), an attempt has been made to characterize adaptive and pathological alterations that are inherent to or accompany the process of hypertrophy. In principle, the designation of a process as adaptive is rooted in a teleological point of view and implies that the basic tendency of the respective structural and functional alterations is appropriate for coping with the altered functional requirements. This does not mean, however, that such alterations are favorable under all conditions and in all stages of hypertrophy. Since organisms generally reveal relatively stereotypic reaction patterns, the terms “adaptive” and “pathological” are not mutually exclusive in the final analysis. In the chronically pressure-loaded ventricle, nearly all alterations are ambiguous (myocardial mass increase, prolongation of the action potential, overproportional increase of intracellular contractile material, decrease of myofibrillar ATPase activity). The altered ATPase activity, which is based on a shift in the isoenzyme pattern of myosin in the direction of isoenzyme V3, is accompanied by a decrease in unloaded shortening velocity but an increase in the efficiency of tension development, as is reflected in reduced oxygen consumption (per wall stress and heart rate) of the whole heart under isovolumetric conditions. This change in the elementary contractile process and the myofibrillar ATPase activity need not be interpreted a priori as negative. However, the ability to adapt to other types of loading, e.g., physical exertion with corresponding increase in heart rate, is limited by the specialization for coping with enhanced pressure load. The term “overadaptation” should be reserved for stages and degrees of hypertrophy in which the negative effects of double-faced alterations predominate. Rapid, excessive increase in pressure loading, as well as long-term hemodynamic overloading, leads to degenerative alterations of the myocardium. At the level of the whole ventricle, structural dilatation results in a decreased cardiac efficiency. Fibrosis of the ventricular wall, the pathogenesis of which is not always unequivocal, is also a negative factor for mechanical performance. Since there are pronounced degrees of hypertrophy without connective tissue increase, e.g., in thyrotoxicosis, fibrosis and accompanying decreased distensibility of the myocardium apparently are not necessarily involved in the development of hypertrophy. Ischemically induced alterations stemming from vasculopathy should be distinguished from hypertrophy-induced changes. The adaptive alteration of the heart in swim-trained rats, which involves an increase in myofibrillar ATPase activity and a shift in the myosin isoenzyme pattern in the direction of V1, leads to an increase in functional capacity at all levels and is in agreement with the generally accepted concept of contractility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, N. R. 1973. Myosin ATPase-activity and mechanical performance in normal and hypertrophied hearts. In: H. Roskamm and H. Reindell (eds.), Das Chronisch Kranke Herz, pp. 130–136. Schattauer, Stuttgart, New York.

    Google Scholar 

  2. Alpert, N. R., and Mulieri, L. A. 1981. The utilization of energy by the myocardium hypertrophied secondary to pressure overload. In: B. Strauer (ed.), The Heart in Hypertension, pp. 153–163. Springer, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  3. Aschoff, L., and Tawara, S. 1906. Die Heutige Lehre von den Pathologisch-Anatomischen Grundlagen der Herzschwache. G. Fischer, Jena.

    Google Scholar 

  4. Bartosova, D., Chvapil, M., Korecky, B., Poupa, O., Rakusan, K., Turek, Z., and Vizek, M. 1969. The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J. Physiol. (Lond.) 200:285–295.

    CAS  Google Scholar 

  5. Brenner, B., and Jacob, R. 1980. Calcium activation and maximum unloaded shortening velocity. Investigations on glycerinated skeletal and heart muscle preparations. Basic Res. Cardiol. 75:40–46.

    Article  PubMed  CAS  Google Scholar 

  6. Buchner, F., and Onishi, S. H. 1970. Herzhypertrophie und Herzinsuffizienz in der Sicht der Elektronenmikroskopie. Urban & Schwarzenberg, Munich.

    Google Scholar 

  7. Cooper, G., Puga, F. J., Zujko, K. J., Harrison, C. E., and Coleman, H. N. 1973. Normal myocardial function and energetics in volume-overload hypertrophy in the cat. Circ. Res. 32:140–148.

    Article  PubMed  Google Scholar 

  8. Dhalla, N. S., Das, P. K., and Sharma, G. P. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363–385.

    Article  PubMed  CAS  Google Scholar 

  9. Eppinger, H. 1931. Zur Pathologie der Kreislaufkorrelation. In: A. Bethe (ed.), Handbuch der Normalen und Pathologischen Physiologie, Vol. 16/2, pp. 1289–1402. Springer, Berlin.

    Google Scholar 

  10. Fleckenstein, A. 1968. Experimentelle Pathologie der akuten und chronischen Herzinsuffizienz. Verh. Dtsch. Ges. Kreislauf forsch. 34:15–34.

    CAS  Google Scholar 

  11. Gamble, W. J., Phornphutkul, C., Jumar, A. E., Sanders, G. L., Manasek, F. J., and Monroe, R. G. 1973. Ventricular performance coronary flow, and MVO2 in aortic coarctation hypertrophy. Am. J. Physiol. 224:877–883.

    PubMed  CAS  Google Scholar 

  12. Gülch, R. W. 1980. The effect of elevated chronic loading on the action potential of mammalian myocardium. J. Mol. Cell. Cardiol. 12:415–420.

    Article  PubMed  Google Scholar 

  13. Gülch, R. W., Baumann, R., and Jacob, R. 1979. Analysis of myocardial action potential in left ventricular hypertrophy of Goldblatt rats. Basic Res. Cardiol. 74:69–82.

    Article  PubMed  Google Scholar 

  14. Gülch, R. W., and Jacob, R. 1975. Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pfluegers Arch. 355:331–346.

    Article  Google Scholar 

  15. Gunning, J. F., and Coleman, H. N. 1973. Myocardial oxygen consumption during experimental hypertrophy and congestive heart failure. J. Mol. Cell. Cardiol. 5:25–38.

    Article  PubMed  CAS  Google Scholar 

  16. Hatt, P. Y., Jouannot, P., Moravec, J., and Swynghedauw, B. 1974. Current trends in heart hypertrophy. Basic Res. Cardiol. 69:479–483.

    Article  PubMed  CAS  Google Scholar 

  17. Hatt, P. Y., and Swynghedauw, B. 1968. Electron microscopic study of myocardium in experimental heart insufficiency. In: H. Reindell, J. Keul, and E. Doll (eds.), Herzinsuffizienz, Pathophysiologie und Klinik, pp. 19–23. Georg Thieme, Stuttgart.

    Google Scholar 

  18. Heilmann, C., Lindl, T., Muller, W., and Pette, D. 1980. Characterization of cardiac microsomes from spontaneously hypertonic rats. Basic Res. Cardiol. 75:92–96.

    Article  PubMed  CAS  Google Scholar 

  19. Henry, P. D., Ahumada, G. G., Friedman, W. F., and Sobel, B. E. 1972. Simultaneously measured isometric tension and ATP hydrolysis in glycerinated fibers from normal and hypertrophied rabbit heart. Circ. Res. 31:740–749.

    Article  PubMed  CAS  Google Scholar 

  20. Hepp, A., Hansis, M., Gülch, R., and Jacob, R. 1974. Left ventricular isovolumetric pressure-volume relations, “diastolic tone,” and contractility in the rat heart after physical training. Basic Res. Cardiol. 69:516–532.

    Article  PubMed  CAS  Google Scholar 

  21. Hoh, J. F. Y., McGrath, P. A., and Hale, P. T. 1978. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10:1053–1076.

    Article  PubMed  CAS  Google Scholar 

  22. Holtz, J., von Restorff, W., Bard, P., and Bassenge, E. 1977. Transmural distribution of myocardial blood flow and of coronary reserve in canine left ventricular hypertrophy. Basic Res. Cardiol. 72:286–292.

    Article  PubMed  CAS  Google Scholar 

  23. Holubarsch, C., and Jacob, R. 1979. Evaluation of elastic properties of myocardium. Experimental models of fibrosis and contracture in heart muscle strips. Z. Kardiol. 68:123–127.

    PubMed  CAS  Google Scholar 

  24. Hugenholtz, P. G., Ellison, R. C., Urschel, C. W., Mirsky, I., and Sonnenblick, E. H. 1970. Myocardial force-velocity relationships in clinical heart disease. Circulation 41:191–202.

    Article  PubMed  CAS  Google Scholar 

  25. Jacob, R. 1976. Pathophysiologie der Herzmuskelinsuffizienz. In: W. Frommhold (ed.), Erkrankungen des Herzmuskels, Vol. 5, Tubinger Klinisch-Radiologie Seminar, pp. 25–36. Georg Thieme, Stuttgart.

    Google Scholar 

  26. Jacob, R., Brenner, B., Ebrecht, G., Holubarsch, C., and Medugorac, I. 1980. Elastic and contractile properties of the myocardium in experimental cardiac hypertrophy of the rat. Methodological and pathophysiological considerations. Basic Res. Cardiol. 75:253–261.

    Article  PubMed  CAS  Google Scholar 

  27. Jacob, R., Ebrecht, G., Kämmereit, A., Medugorac, I., and Wendt-Gallitelli, M. F. 1977. Myocardial function in different models of cardiac hypertrophy. An attempt at correlating mechanical, biochemical and morphological parameters. Basic Res. Cardiol. 72:160–169.

    Article  PubMed  CAS  Google Scholar 

  28. Jacob, R., Kämmereit, A., Medugorac, I., and Wendt-Gallitelli, M. F. 1976. Maximalgeschwindigkeit der lastfreien Verkurzung (Vmax), myokardiale Lesitungsfahigkeit und “Kontraktilitatsindizes” beim hypertrophierten Myokard. Z. Kardiol. 65:392–400.

    PubMed  CAS  Google Scholar 

  29. Jacob, R., and Kissling, G. 1981. Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological and electrophysiological correlates. In: B. E. Strauer(ed.), The Heart in Hypertension, pp. 89–107. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  30. Jacob, R., and Nägle, S. 1969. Pathophysiologie des insuffizienten Herzens. Hippokrates 40:817–850.

    PubMed  CAS  Google Scholar 

  31. Kämmereit, A., and Jacob, R. 1979. Alterations in rat myocardial mechanics under Goldblatt hypertension and experimental aortic stenosis. Basic Res. Cardiol. 74:389–405.

    Article  PubMed  Google Scholar 

  32. Kämmereit, A., Medugorac, I., Steil, E., and Jacob, R. 1975. Mechanics of the isolated ventricular myocardium of rats conditioned by physical training. Basic Res. Cardiol. 70:495–507.

    Article  PubMed  Google Scholar 

  33. Katz, A. M. 1970. Contractile proteins of the heart. Physiol. Rev. 50:63–158.

    PubMed  CAS  Google Scholar 

  34. Kissling, G. 1980. Oxygen consumption and substrate uptake of the hypertrophied rat heart in situ. Basic Res. Cardiol. 75:185–192.

    Article  PubMed  CAS  Google Scholar 

  35. Kissling, G., Gassenmaier, T., Wendt-Gallitelli, M. F., and Jacob, R. 1977. Pressure-volume relations, elastic modulus, and contractile behavior of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pfluegers Arch. 369:213–221.

    Article  CAS  Google Scholar 

  36. Kissling, G., and Wendt-Gallitelli, M. F. 1977. Dynamics of the hypertrophied left ventricle in the rat. Effects of physical training and chronic pressure load. Basic Res. Cardiol. 72:178–183.

    Article  PubMed  CAS  Google Scholar 

  37. Linzbach, A. J. 1948. Herzhypertrophie und kritisches Herzgewicht. Klin. Wochenschr. 26:459–463.

    Article  PubMed  CAS  Google Scholar 

  38. Linzbach, A. J., and Kyrieleis, C. 1968. Strukturelle Analyse chronisch insuffizienter menschlicher Herzen. In: H. Reindell, J. Keul, and E. Doll (eds.), Herzinsuffizienz, Pathophysiologie und Klinik, pp. 11–19. Georg Thieme, Stuttgart.

    Google Scholar 

  39. Lompre, A.-M., Schwartz, K., d’Albis, A., Lacombe, G., van Thiem, N., and Swynghedauw, B. 1979. Myosin isoenzyme redistribution in chronic heart overload. Nature 282:105–107.

    Article  PubMed  CAS  Google Scholar 

  40. Maron, B. J., Ferrans, V. J., and Roberts, W. C. 1975. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am. J. Pathol. 79:387–434.

    PubMed  CAS  Google Scholar 

  41. Maughan, D., Low, E., Litten, R., Brayden, J., and Alpert, N. R. 1979. Calcium-activated muscle from hypertrophied rabbit hearts. Circ. Res. 44:279–287.

    Article  PubMed  CAS  Google Scholar 

  42. Medugorac, I. 1980. Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res. 14:551–554.

    Article  PubMed  CAS  Google Scholar 

  43. Medugorac, I., and Jacob, R. 1976. Concentration and adenosinetrophosphatase activity of left ventricular actomyosin in Goldblatt rats during the compensatory stage of hypertrophy. Z. Physiol. Chem. 357:1495–1503.

    Article  CAS  Google Scholar 

  44. Meerson, F.Z. 1969. Hyperfunktion, Hypertrophie and Insuffizienz des Herzens. VEB Volk und Gesundheit, Berlin.

    Google Scholar 

  45. Meerson, F. Z. 1976. Insufficiency of hypertrophied heart. Basic Res. Cardiol. 71:343–354.

    Article  PubMed  CAS  Google Scholar 

  46. Meerson, F. Z., and Breger, A. M. 1977. The common mechanism of the heart’s adaptation and deadaptation: Hypertrophy and atrophy of the heart muscle. Basic Res. Cardiol. 72:228–234.

    Article  PubMed  CAS  Google Scholar 

  47. Page, E., McCallister, L. P., and Power, B. 1971. Stereological measurements of cardiac ultrastructures implicated in excitaton-contraction coupling (sarcotubulus and T-system). Proc. Natl. Acad. Sci. U.S.A. 68:1465–1466.

    Article  PubMed  CAS  Google Scholar 

  48. Penpargkul, S., Malhotra, A., Schaible, T., and Scheuer, J. 1980. Cardiac contractile proteins and sarcoplasmic reticulum in hearts of rats trained by running. J. Appl. Physiol. 48:409–413.

    PubMed  CAS  Google Scholar 

  49. Pette, D., and Heilmann, C. 1977. Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation. Basic Res. Cardiol. 72:247–253.

    Article  PubMed  CAS  Google Scholar 

  50. Rabinowitz, M., and Zak, R. 1975. Mitochondria and cardiac hypertrophy. Circ. Res. 36:367–376.

    Article  PubMed  CAS  Google Scholar 

  51. Rupp, H. 1980. Cooperative effects of calcium on myofibrillar ATPase of normal and hypertrophied heart. Basic Res. Cardiol. 75:157–162.

    Article  PubMed  CAS  Google Scholar 

  52. Rupp, H. 1982. Calcium-dependent activation of cardiac myofibrils: The mechanisms that modulate myofibrillar ATPase and tension and their significance for heart function. In: E. Chazov, V. Smirnov, and N. S. Dhalla (eds.), Advances in Myocardiology, Volume 3, pp. 455–466. Plenum Medical Book Company, New York.

    Google Scholar 

  53. Sack, D. W., Cooper, G., and Harrison, C. E. 1977. The role of Ca2 ions in the hypertrophied myocardium. Basic Res. Cardiol. 72:268–273.

    Article  PubMed  CAS  Google Scholar 

  54. Scheuer, J., and Bhan, A. K. 1979. Cardiac contractile proteins. Circ. Res. 45:1–12.

    Article  PubMed  CAS  Google Scholar 

  55. Sonnenblick, E. H. 1970. Contractility of cardiac muscle. Circ. Res. 27:479–481.

    Article  PubMed  CAS  Google Scholar 

  56. Spann, J. F., Jr., Buccino, R. A., Sonnenblick, E. H., and Braunwald, E. 1967. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21:341–354.

    Article  PubMed  Google Scholar 

  57. Strauer, B. E. 1980. Hypertensive Heart Disease. Springer, Berlin Heidelberg, New York.

    Book  Google Scholar 

  58. Swynghedauw, B., and Leger, J. J. 1975. A new myosin molecule in heart overloading. A stimulating working hypothesis. In: Abstract Volume, International Study Group for Research in Cardiac Metabolism European Section, Brussels, p. 69.

    Google Scholar 

  59. Swynghedauw, B., Schwartz, K., and Leger, J. J. 1977. Cardiac myosin. Phylogenic and pathological changes. Basic Res. Cardiol. 72:254–260.

    Article  PubMed  CAS  Google Scholar 

  60. Ullrich, K. J., Riecker, G., and Kramer, K. 1954. Das Druckvolumendiagramm des Warmbluterherzens. Pfluegers. Arch. 259:481–498.

    Article  CAS  Google Scholar 

  61. Wendt-Gallitelli, M. F., Ebrecht, G., and Jacob, R. 1979. Morphological alterations and their functional interpretation in the hypertrophied myocardium of Goldblatt hypertensive rats. J. Mol. Cell. Cardiol. 11:275–287.

    Article  PubMed  CAS  Google Scholar 

  62. Wikman-Coffelt, J., Parmley, W. W., and Mason, D. T. 1979. The cardiac hypertrophy process: Analyses of factors determining pathological vs. physiological development. Circ. Res. 45:697–707.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacob, R., Kissling, G., Ebrecht, G., Holubarsch, C., Medugorac, I., Rupp, H. (1983). Adaptive and Pathological Alterations in Experimental Cardiac Hypertrophy. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics