Reperfusion Injury

A Possible Link between Catecholamine-Induced and Ischemic Myocardial Alterations
  • G. Rona
  • M. Boutet
  • I. Hüttner


In this study we have compared myocardial lesions induced by catecholamines and coronary occlusion and reperfusion injuries in rats. Although microcirculatory factors were found to play an important role in catecholamine-induced cardiac muscle cell injury, alterations in sarcolemmal membrane permeability suggest a direct cardiotoxic effect. Cardiac muscle cells damaged irreversibly by ischemia reveal sarcomeres in extreme relaxation and mitochondria with floccular densities; cardiac muscle cells that die following reperfusion exhibit contraction band formation and mitochondria with calcium phosphate deposits. The ultrastructural appearance of reperfused ischemic cardiac muscle cells was similar to that observed following administration of catecholamines. These morphological similarities suggest a common causal pathway for stress-induced and ischemic heart diseases.


Reperfusion Injury Coronary Occlusion Cardiac Structure Myocardial Necrosis Cardiac Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amelin, A., Anshelevich, Yu. V., and Dombrovskaya, L. 1966. Reproduction of necrosis of myocardium and of aorta in dogs by isadrin (isopropylnoradrenalin). Latv. Acad. Sci. News 228:115–119.Google Scholar
  2. 2.
    Amelin, A. Z., Anshelevich, Yu. V., and Melzobs, M. Ya. 1963. [Experimental infarctionlike changes of the myocardium under isadrin (isopropylnoradrenalin) action.] Arkh. Patol. 1:25–29.Google Scholar
  3. 3.
    Anitschkow, N. 1913. Uber die Histogenese der Myokardveränderungen bei einigen Intoxikationen. Arch. Pathol. Anat. 211:193.CrossRefGoogle Scholar
  4. 4.
    Anshelevitch, Y., Amelin, A., and Melzobs, M. 1961. Reproduction of necrosis in the myocardium of rabbits by isadrine (isopropylnoradrenalin). Latv. Acad. Sci. News 173:91–94.Google Scholar
  5. 5.
    Anshelevitch, Y., Vuskalne, L., and Kartashova, O. 1964. Histochemical investigation of the myocardium in experiments with application of isopropylnoradrenalin. Latv. Acad. Sci. News. 203:87–91.Google Scholar
  6. 6.
    Axelrod, J., and Weinshilboum, R. 1972. Catecholamines. Physiol. Med. 287:237–242.Google Scholar
  7. 7.
    Baroldi, G. 1972. Human myocardial infarction: Coronarogenic or noncoronarogenic coagulation necrosis? In: E. Bajusz and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 1: Myocardiology, pp. 399–413. University Park Press, Baltimore.Google Scholar
  8. 8.
    Baroldi, G., and Scomazzoni, G. 1967. Coronary Circulation in the Normal and the Pathologic Heart. Office of the Surgeon General, Department of the Army, Washington.Google Scholar
  9. 9.
    Baroldi, G., Silver, M. D., Lixfeld, W., and McGregor, D. C 1977. Irreversible myocardial damage resembling catecholamine necrosis secondary to acute coronary occlusion in dogs: Its prevention by propranolol. J. Mol. Cell. Cardiol. 9:687–691.PubMedCrossRefGoogle Scholar
  10. 10.
    Baughman, K. L., Maroko, P. R., and Vatner, S. F. 1981. Effects of coronary artery reperfusion on myocardial infarct size and survival in conscious dogs. Circulation 63:317–323.PubMedCrossRefGoogle Scholar
  11. 11.
    Boor, P. J., and Reynolds, E. S. 1977. Myocardial infarct size: Clinicopathologic agreement and discordance. Hum. Pathol. 8:685–695.PubMedCrossRefGoogle Scholar
  12. 12.
    Boutet, M., Hüttner, I., and Rona, G. 1973. Aspect microcirculatoire des lésions myocar-diques provoquées par l’infusion de catécholamines. Etude ultrastructurale à l’aide de traceurs de diffusion. I. Isoprotérénol. Pathol. Biol. (Paris) 21:811–825.Google Scholar
  13. 13.
    Boutet, M., Hüttner, I., and Rona, G. 1974. Aspect microcirculatoire des lésions myocar-diques provoquées par l’infusion de catécholamines. Etude ultrastructurale à l’aide de traceurs de diffusion. II. Norépinéphrine, Pathol. Biol. (Paris) 22:377–387.Google Scholar
  14. 14.
    Boutet, M., Hüttner, I., and Rona, G. 1976. Permeability alteration of sarcolemmal membrane in catecholamine induced cardiac muscle cell injury. Lab. Invest. 34:482–488.PubMedGoogle Scholar
  15. 15.
    Büchner, F. 1932. Die Rolle des Herzmuskels bei der Angina Pectoris. Beitr. Pathol. Anat. (Stuttgart) 89:644–667.Google Scholar
  16. 16.
    Büchner, F. 1933. Das morphologische Substrat der Angina Pectoris in Tierexperiment. Beitr. Pathol. Anat. (Stuttgart) 92:311–328.Google Scholar
  17. 17.
    Bulkley, B. H., and Hutchins, G. M. 1977. Myocardial consequences of coronary artery bypass graft surgery. Circulation 56:906–913.CrossRefGoogle Scholar
  18. 18.
    Bush, L. R., Shlafer, M., Haack, D. W., and Lucchesi, B. R. 1980. Time-dependent changes in canine cardiac mitochondrial function and ultrastructure resulting from coronary occlusion and reperfusion. Basic Res. Cardiol. 75:555–571.PubMedCrossRefGoogle Scholar
  19. 19.
    Cebelin, M. S., and Hirsch, C. S. 1980. Human stress cardiomyopathy. Hum. Pathol. 11:123–132.PubMedCrossRefGoogle Scholar
  20. 20.
    Cellarius, Yu. G., and Semenova, L. A. 1971. [Changes in the myocardial stroma in adrenaline injuries of the heart.] Arkh. Pathol 33:43–49.Google Scholar
  21. 21.
    Cellarius, Yu. G., and Semenova, L. A. 1972. Histopathology of Focal Metabolic Lesions of the Myocardium. Nauka Siberian Branch, Novosibirsk.Google Scholar
  22. 22.
    Csapo, Z., Dusek, J., and Rona, G. 1972. Early alterations of the cardiac muscle cells in isoproterenol-induced necrosis. Arch. Pathol. 93:356–365.PubMedGoogle Scholar
  23. 23.
    Cuénoud, H. F., Joris, I., and Majno, G. 1978. Ultrastructure of the myocardium after pulmonary embolism. Am. J. Pathol. 92:421–458.PubMedGoogle Scholar
  24. 24.
    Darsee, J. R., and Kloner, R. A. 1980. The no reflow phenomenon: A time-limiting factor for reperfusion after coronary occlusion? Am. J. Cardiol. 46:800–806.PubMedCrossRefGoogle Scholar
  25. 25.
    Ellis, E. F., Oelz, O., Roberts II L. J., Payne, N. A., Sweetman, B. J., Nies, A. S., and Oates, J. A. 1976. Coronary arterial smooth muscle contraction by a substance released from platelets: Evidence that it is thromboxane A2. Science 193:1135–1137.PubMedCrossRefGoogle Scholar
  26. 26.
    Fleckenstein, A. 1971. Specific inhibitors and promotors of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesion. In: P. Harris and L. Opie (eds.), Calcium and the Heart, pp. 135–188. Academic Press, New York, London.Google Scholar
  27. 27.
    Fleckenstein, A., Janke, J., Doring, H. J., and Leder, O. 1971. Die intrazellulare Überladung mit Kalzium als entscheidender Kausalfaktor bei der Entstehung nicht-coron-arogener Myokard-nekrosen. Verh. Dtsch. Ges. Kreislauffforsch. 37:345–353.CrossRefGoogle Scholar
  28. 28.
    Fleckenstein, A., Janke, J., Doring, H. J., and Leder, O. 1974. Myocardial fibre necrosis due to intracellular Ca2+ overload—a new principle in cardiac pathophysiology. In: N. S. Dhalla (ed.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 4: Myocardial Biology, pp. 563–580. University Park Press, Baltimore.Google Scholar
  29. 29.
    Fleckenstein, A., Janke, J., Doring, H. J., and Leder, O. 1975. Key role of Ca in the production of noncoronarogenic myocardial necroses. In: A. Fleckenstein and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism Vol. 6: Pathophysiology and Morphology of Myocardial Cell Alteration, pp. 21–32. University Park Press, Baltimore.Google Scholar
  30. 30.
    Fleckenstein, A., Janke, J., Doring, H. J., and Pachinger, O. 1973. Ca overload as the determinant factor in the production of catecholamine-induced myocardial lesions. In: E. Bajusz and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 2: Cardiomyopathies, pp. 455–466. University Park Press, Baltimore.Google Scholar
  31. 31.
    Gold, H. K., Leinback, R. C, and Maroko, P. R. 1976. Propranolol-induced reduction of signs of ischemic injury during acute myocardial infarction. Am. J. Cardiol. 38:689–695.PubMedCrossRefGoogle Scholar
  32. 32.
    Gotlieb, A., Masse, S., Allard, J., Dobell, A., and Huang, S.-N. 1977. Concentric hemorrhagic necrosis of the myocardium. Hum. Pathol. 8:27–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Handforth, C. P., 1962. Isoproterenol-induced myocardial infarction in animals. Arch. Pathol. 73:161–165.PubMedGoogle Scholar
  34. 34.
    Hearse, D. J., Baker, J. E., and Humphrey, S. M. 1980. Verapamil and the calcium paradox. J. Mol. Cell. Cardiol. 12:733–739.PubMedCrossRefGoogle Scholar
  35. 35.
    Hillis, L. D., and Braunwald, E. 1977. Myocardial ischemia. N. Engl. J. Med. 296:971–978, 1034–1044, 1093–1096.PubMedCrossRefGoogle Scholar
  36. 36.
    Hofmann, M., Hofmann, M., Genth, K., and Schaper, W. 1980. The influence of reperfusion on infarct size after experimental coronary artery occlusion. Basic Res. Cardiol. 75:572–582.PubMedCrossRefGoogle Scholar
  37. 37.
    Hultgren, H. N., Miyagawa, M., Busch, W., and Angelí, W. W. 1973. Ischemic myocardial injury during cardiopulmonary bypass surgery. Am. Heart J. 85:167–176.PubMedCrossRefGoogle Scholar
  38. 38.
    Hutchins, G. M., and Bulkley, B. H. 1977. Correlation of myocardial contraction band necrosis and vascular patency. Lab. Invest. 36:642–648.PubMedGoogle Scholar
  39. 39.
    Hutchins, G. M., and Silverman, K. H. 1979. Pathology of the stone heart syndrome. Massive myocardial contraction band necrosis and widely patent coronary arteries. Am. J. Pathol. 95:745–750.PubMedGoogle Scholar
  40. 40.
    Hüttner, I. 1980. The sarcolemma. In: M. R. Bristow (ed.), Drug-Induced Heart Disease, pp. 3–37. Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  41. 41.
    Hüttner, I., Rona, G., and More, R. H. 1971. Fibrin deposition within cardiac muscle cells in malignant hypertension. An electron microscopic study. Arch. Pathol. 91:19–28.PubMedGoogle Scholar
  42. 42.
    Jellinek, H., Hüttner, I., and Kerényi, T. 1963. Pathohistologische Veränderungen im Myocard bei mit Noradrenalin behandelten Hunden. In: G. Gottsegen (ed.), Acta Secundi Conventus Medicinae Internae Hungarici Cardiología, pp. 338–339. Hungarian Society for Cardiology, Budapest.Google Scholar
  43. 43.
    Jennings, R. B., Ganote, C. E., and Reimer, K. A. 1975. Ischemic tissue injury. Am. J. Pathol. 81:179–198.PubMedGoogle Scholar
  44. 44.
    Jennings, R. B., and Reimer, K. A. 1974. Salvage of ischemic myocardium. Mod. Concepts Cardiovasc. Dis. 43:125.Google Scholar
  45. 45.
    Jennings, R. B., and Reimer, K. A. 1981. Lethal myocardial ischemic injury. Am. J. Pathol. 102:241–255.PubMedGoogle Scholar
  46. 46.
    Josué, O. 1907. Hypertrophie cardiaque causée par l’adrénaline et la toxine typhique. C. R. Soc. Biol. (Paris) 63:285–286.Google Scholar
  47. 47.
    Kloner, R. A., Fishbein, M. C, Cotran, R. S., Braunwald, E., and Maroko, P. R. 1977. The effect of propranolol on microvascular injury in acute myocardial ischemia. Circulation 55:872–879.PubMedCrossRefGoogle Scholar
  48. 48.
    Kloner, R. A., Ganote, C. E., and Jennings, R. B. 1974. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54:1496–1508.PubMedCrossRefGoogle Scholar
  49. 49.
    Kloner, R. A., Rude, R. E., Carlson, N., Maroko, P. R., DeBoer, L. W. V, and Braunwald, E. 1980. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: Which comes first? Circulation 62:945–952.PubMedCrossRefGoogle Scholar
  50. 50.
    Korb, G., and Totovic, V. 1969. Electron microscopical studies on experimental ischemic lesions of the heart. Ann. N.Y. Acad. Sci. 156:48–59.PubMedCrossRefGoogle Scholar
  51. 51.
    Krug, A., du Mesnil, de Rochemont, W., and Korb, G. 1966. Blood supply of the myocardium after temporary coronary occlusion. Circ. Res. 19:57–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Long, R., Symes, J., Allard, J., Burdon, T., Lisbona, R, Hüttner, L, and Sniderman, A. 1980. Differentiation between reperfusion and occlusion myocardial necrosis with tech-netium-99m pyrophosphate scans. Am. J. Cardiol. 46:413–418.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin, A. M., Jr., Hackel, D. B., and Kurtz, S. M. 1964. The ultrastructure of zonal lesions of the myocardium in hemorrhagic shock. Am. J. Pathol. 44:124–140.Google Scholar
  54. 54.
    Maseri, A., Severi, S., DeNes, M., L’Abbate, A., Chierchia, S., Marzilli, M., Ballestra, A.-M., Parodi, O., Biagini, A., and Distante, A. 1978. “Variant” angina: One aspect of a continuous spectrum of vasopastic myocardial ischemia. Pathogenetic mechanisms, estimated incidence, clinical and coronarographic findings in 138 patients. Am. J. Cardiol. 42:1019–1035.PubMedCrossRefGoogle Scholar
  55. 55.
    Meerson, F. Z. 1980. Disturbances of metabolism and cardiac function under the action of emotional painful stress and their prophylaxis. Basic Res. Cardiol. 75:479–500.PubMedCrossRefGoogle Scholar
  56. 56.
    Meessen, H. 1939. Experimentelle Untersuchungen zum Collapsproblem. Beitr. Pathol. Anat. (Stuttgart) 102:191–267.Google Scholar
  57. 57.
    Mickleborough, L., Hüttner, I., Symes, J., Poirier, N., and Sniderman, A. D. 1978. Significance of epicardial Q waves as an acute marker of myocardial necrosis in dogs. Car-diovas. Res. 12:376–386.CrossRefGoogle Scholar
  58. 58.
    Nayler, W. G., Ferrari, R., and Williams, A. 1980. Protective effect of pretreatment with verapamil, nifedipine and propronolol on mitochondrial function in the ischemic and re-perfused myocardium. Am. J. Cardiol. 46:242–248.PubMedCrossRefGoogle Scholar
  59. 59.
    Neill, W. A., Wharton, T. P., Fluri-Lundeen, J., and Cohen, I. S. 1980. Acute coronary insufficiency—coronary occlusion after intermittent ischemic attacks. N. Engl. J. Med. 302:1157–1162.PubMedCrossRefGoogle Scholar
  60. 60.
    Raab, W. 1960. Key position of catecholamine in functional and degenerative cardiovascular pathology. Am. J. Cardiol. 5:571–578.PubMedCrossRefGoogle Scholar
  61. 61.
    Raab, W., Stark, E., MacMilan, W. H., and Gigee, W. R. 1961. Sympathogenic origin and antiadrenergic prevention of stress-induced myocardial lesions. Am. J. Cardiol. 8:203–211.PubMedCrossRefGoogle Scholar
  62. 62.
    Raab, W., Van Lith, P., Lepeschkin, E., and Herrlich, H. C. 1962. Catecholamine-induced myocardial hypoxia in the presence of impaired coronary dilatability independent of external cardiac work. Am. J. Cardiol. 9:455–570.PubMedCrossRefGoogle Scholar
  63. 63.
    Reichenbach, D., and Benditt, E. P. 1968. Myofibrillar degeneration: A response of the myocardial cell to injury. Arch. Pathol. 85:189–199.PubMedGoogle Scholar
  64. 64.
    Reichenbach, D. D., and Benditt, E. P. 1970. Catecholamines and cardiomyopathy: The pathogenesis and potential importance of myofibrillar degeneration. Hum. Pathol. 1:125–150.CrossRefGoogle Scholar
  65. 65.
    Reichenbach, D., Moss, N., and Meyer, E. 1977. Pathology of the heart in sudden cardiac death. Am. J. Cardiol 39:865–872.PubMedCrossRefGoogle Scholar
  66. 66.
    Reimer, K. A., and Jennings, R. B. 1979. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40:633–644.PubMedGoogle Scholar
  67. 67.
    Rona, G., Boutet, M., Hüttner, I., and Peters, H. 1973. Pathogenesis of isoproterenol-induced myocardial alterations. Functional and morphological correlates. In: N. Dhalla (ed.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 3: Myocardial Metabolism, pp. 507–525. University Park Press, Baltimore.Google Scholar
  68. 68.
    Rona, G., Chappel, C. I., Balazs, T., and Gaudry, R. 1959. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch. Pathol. 67:443–455.Google Scholar
  69. 69.
    Rona, G., Hüttner, I, and Boutet, M., 1977. Microcirculatory changes in myocardium with particular reference to catecholamine-induced cardiac muscle cell injury. In: H. Meessen (ed.), Handbuch der Allgemeinen Pathologie. III/7: Microcirculation, pp. 791–888. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  70. 70.
    Schanne, F. A. X., Kane, A. B., Young, E. E., and Farber, J. L. 1979. Calcium dependence of toxic cell death: A final common pathway. Science 206:700–702.PubMedCrossRefGoogle Scholar
  71. 71.
    Selye, H., Bajusz, E., Grasso, S., and Mendell, P. 1960. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 2:398–407.CrossRefGoogle Scholar
  72. 72.
    Semenova, L. A., Eriskovskaja, N. K., and Cellarius, Y. G. 1971. Polarization and electron microscopic investigations of intracellular regeneration of the myocardium after myocy-tolysis. Morphol. Pathomorphol. 3:102–105.Google Scholar
  73. 73.
    Sharma, G. O., Varley, K. G., Kim, S. W., Barwinsky, J., Cohen, M., and Dhalla, N. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion. Am. J. Cardiol. 36:233–243.Google Scholar
  74. 74.
    Siegel, H., Janke, J., and Fleckenstein, A. 1975. Restriction of isoproterenol-induced myocardial Ca2+ uptake and necrotization in rats by a new Ca2+ antagonistic compound [ethyl-4-(3,4,5-trimethoxycinnamoyl)piperazinyl acetate (Vascoril).] In: A. Fleckenstein and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 6: Pathophysiology and Morphology of Myocardial Cell Alteration, pp. 121–126. University Park Press, Baltimore.Google Scholar
  75. 75.
    Somani, P., Laddu, A. R., and Hardman, H. R. 1970. Nutritional circulation in the heart. III. Effect of isoproterenol and beta adrenergic blockage on myocardial hemodynamics and rubidium-86 extraction in the isolated supported heart preparation. J. Pharmacol. Exp. Ther. 175:577–592.PubMedGoogle Scholar
  76. 76.
    Szabo, S., Hüttner, I., Kovacs, K., Horvath, E., Szabo, D., and Horner, H. C 1980. Pathogenesis of experimental adrenal hemmorhagic necrosis “apoplexy.” Ultrastructural, biochemical, neuropharmacologic and blood coagulation studies with acrylonitrile in the rat. Lab. Invest. 42:533–546.PubMedGoogle Scholar
  77. 77.
    Szakacs, J. E., and Cannon, A. 1958. J-Norepinephrine myocarditis. Am. J. Clin. Pathol. 30:425–430.PubMedGoogle Scholar
  78. 78.
    Vishnevskaja, O. P. 1956. [Reflex mechanisms in the pathogenesis of adrenalin myocarditis.] Bull. Eksp. Biol. Med. 41:307–310.CrossRefGoogle Scholar
  79. 79.
    Waagstein, F., Hjalmarson, A., Swedberg, K., and Waldenstrom, A. 1979. The role of catecholamines in the development of heart disease. In: S. Hayase and S. Murao (eds.), Cardiology, pp. 644–650. Excerpta Medica, Amsterdam.Google Scholar
  80. 80.
    Weishaar, R., Tschurtschenthaler, G. V., Ashikawa, K., and Bing, R. J. 1979. The relationship of regional coronary blood flow to mitochondrial function during reperfusion of the ischemic myocardium. Cardiology 64:350–364.PubMedCrossRefGoogle Scholar
  81. 81.
    Yates, J. C, Taam, G. M. L., Singal, P. K., Beamish, R. E., and Dhalla, N. S. 1980. Modification of adrenochrome-induced cardiac contractile failure and cell damage by changes in cation concentrations. Lab. Invest. 43:316–326.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • G. Rona
    • 1
  • M. Boutet
    • 1
  • I. Hüttner
    • 1
  1. 1.Department of PathologyMcGill UniversityMontrealCanada

Personalised recommendations