Advertisement

Pathophysiology of Irreversible Ischemic Injury

The Border Zone Controversy
  • D. J. Hearse
  • D. M. Yellon

Abstract

At the present time our experimental findings plus the weight of other experimental evidence suggest that there is unlikely to be a quantitatively significant border zone in the lateral plane. The transition from normal to ischemic tissue is likely to be accomplished over a distance of 1.0 mm or less and possibly in as little as the dimensions of one cell. The situation in the transmural plane is less well established, but if the same situation occurs, then the absence of a spatially indentifiable border zone of intermediate injury will require a major reappraisal, although not an abandonment, of concepts for the therapeutic limitation of infarct size. Any extrapolation of the observations, comments, and conclusions made in this paper to the human heart should be made with extreme caution. Major species differences exist, particularly in relation to the characteristics of collateral flow. Most experimental studies have involved single or multiple coronary artery ligation, a situation that generates large areas of sharply demarcated ischemia. These areas are very severely ischemic and short of reperfusion, which is hardly a practical consideration in the early phases of evolving myocardial infarction; the affected tissue is inevitably condemned to cell death and necrosis. The situation prevailing in man with partial coronary artery occlusion or diffuse ischemic heart disease may well be be very different and is clearly in urgent need of investigation.

Keywords

Infarct Size Ischemic Tissue Border Zone Sharp Interface Ischemic Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banka, VV. S., Bodenheimer, M. M., Ramanathan, K. B., Hermann, G. A., and Helfant, R. H. 1978. Progressive transmural electrographic, myocardial potassium ion/sodium ion ratio and ultrastructural changes as a function of time after acute coronary occlusion. Am. J. Cardiol. 42:429–443.PubMedCrossRefGoogle Scholar
  2. 2.
    Barlow, C. H., and Chance, B. 1976. Ischemic areas in perfused rat hearts: Mesurement by NADH fluorescence photography. Science193:909–910.PubMedCrossRefGoogle Scholar
  3. 3.
    Becker, L. C, Ferreira, R., and Thomas, M. 1973. Mapping of left ventricular blood flow with radioactive microspheres in experimental coronary artery occulsion. Cardiovasc. Res. 7:391–400.PubMedCrossRefGoogle Scholar
  4. 4.
    Beller, G. A., Smith, T. W., and Hood, B. W., Jr. 1972. Altered distribution of tritiated digoxin in the infarcted canine left ventricle. Circulation46:572–579.PubMedCrossRefGoogle Scholar
  5. 5.
    Bishop, S. P., White, F. C., and Bloor, C. M. 1976. Regional myocardial blood flow during acute myocardial infarction in the conscious dog. Circ. Res. 38:429–438.PubMedCrossRefGoogle Scholar
  6. 6.
    Braunwald, E., Maroko, P. R., and Libby, P. 1974. Reduction of infarct size following coronary occlusion. Circ. Res. 35(Suppl. 3): 192–201.PubMedGoogle Scholar
  7. 7.
    Bruyneel, K. J. J. 1975. Use of moving epicardial electrodes in defining ST-segment changes after acute coronary occlusion in the baboon. Relations to primary ventricular fibrillation. Am. Heart J. 89:731–741.PubMedCrossRefGoogle Scholar
  8. 8.
    Cox, J. L., McLaughlin, V. W., Flowers, N. C., and Horan, L. G. 1968. The ischemic zone surrounding acute myocardial infarction. Its morphology as detected by dehydrogenase staining. Am. Heart J. 76:650–659.PubMedCrossRefGoogle Scholar
  9. 9.
    Factor, S. M., Sonnenblick, E. H., and Kirk, E. S. 1978. The histologic border zone of acute myocardial infarction—islands or peninsulas. Am. J. Pathol92:111–120.PubMedGoogle Scholar
  10. 10.
    Farrer-Brown, G. 1976. A Colour Atlas of Cardiac pathology, p. 78. Wolf Medical, London.Google Scholar
  11. 11.
    Fishbein, M. C, Hare, C. A., Gissen, S. A., Spadaro, J., Maclean, D., and Moroko, P. R. 1980. Identification and quantification of histochemical border zones during the evolution of myocardial infarction in the rat. Cardiovasc. Res. 14:41–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Fozzard, H. A., and Das Gupta, D. S. 1976. ST-segment potentials and mapping. Theory and experiments. Circulation54:533–537.PubMedCrossRefGoogle Scholar
  13. 13.
    Fulton, W. F. M. 1965. The Coronary Arteries. Charles C Thomas, Springfield, Illinois.Google Scholar
  14. 14.
    Harden, W. R., Simson, M. B., Barlow, C. H., Soriano, R., and Harkens, A. H. 1978. Display of epicardial ischemia by reduced nicotinamide adenine dinucleotide fluorescence photography, electron microscopy and ST segment mapping. Surgery83:732–740.PubMedGoogle Scholar
  15. 15.
    Harken, A. J., Barlow, C. H., Harden, W. R., and Chance, B. 1978. Two and three dimensional display of myocardial ischemic “border zone” in dogs. Am. J. Cardiol. 42:954–959.PubMedCrossRefGoogle Scholar
  16. 16.
    Hearse, D. J., Garlick, P. M., and Humphrey, S. M. 1977. Ischemic contracture of the myocardium: Mechanisms and prevention. Am. J. Cardiol. 39:986–993.PubMedCrossRefGoogle Scholar
  17. 17.
    Hearse, D. J., Opie, L. H., Katzeff, I. E., Lubbe, W. F., Van der Werff, T. J., Peisach, M., and Boulle, G. 1977. Characterization of the “border zone” in acute regional ischemia in the dog. Am. J. Cardiol. 40:716–726.PubMedCrossRefGoogle Scholar
  18. 18.
    Hearse, D. J., Yellon, D. M., Chappell, D. A., Wyse, R. K. H., and Ball, G. R. 1981. A high velocity impact device for obtaining multiple, contiguous myocardial biopsies. J. Mol. Cell. Cardiol. 13:197–206.PubMedCrossRefGoogle Scholar
  19. 19.
    Helfant, R. H., Banka, V. S., and Bodenheimer, M. M. 1978. Perplexities and complexities concerning the myocardial infarction border zone and its salvage. Am. J. Cardiol. 41:345–347.PubMedCrossRefGoogle Scholar
  20. 20.
    Hillis, L. D., Askenazi, J., Braunwald, E., Radvany, P., Muller, J. E., Fishbein, M. C, and Moroko, P. R. 1976. Use of changes in the epicardial QRS complex to assess interventions which modify the extent of myocardial necrosis following coronary artery occlusion. Circulation54:591–598.PubMedCrossRefGoogle Scholar
  21. 21.
    Hirzel, H. O., Sonnenblick, E. H., and Kirk, E. S. 1977. Absence of a lateral border zone of intermediate creatine Phosphokinase depletion surrounding a central infarct 24 hours after acute coronary occlusion in the dog. Circ. Res. 41:673–683.PubMedCrossRefGoogle Scholar
  22. 22.
    Janse, M. J., Cinca, J., Morena, H., Fiolet, J. W. T., Kléber, A. G., De Vries, G. P., Becker, A. E., and Durrer, D. 1979. The “border zone” in myocardial ischemia. An electrophysiological, metabolic and histochemical correlation in the pig heart. Circ. Res. 44:576–588.PubMedCrossRefGoogle Scholar
  23. 23.
    Kjekshus, J. K. 1976. Assessment of myocardial injury with creatine Phosphokinase (CPK). Circulation53(Suppl. 1): 106–108.Google Scholar
  24. 24.
    Kjekshus, J. K., Maroko, P. R., and Sobel, B. E. 1972. Distribution of myocardial injury and its relation to epicardial ST-segment changes after coronary artery occlusion in the dog. Cardiovasc. Res. 6:490–499.PubMedCrossRefGoogle Scholar
  25. 25.
    Kjekshus, J. K., and Sobel, B. E. 1970. Depressed myocardial creatine Phosphokinase activity following experimental myocardial infarction in rabbit. Cir. Res. 27:403–414.CrossRefGoogle Scholar
  26. 26.
    Kubier, W., and Spieckermann, P. G. 1970. Regulation of glycolysis in the ischemic and anoxic myocardium. J. Mol. Cell. Cardiol. 1:351–377.CrossRefGoogle Scholar
  27. 27.
    Lie, J. T., Pairoleno, P. C, and Holley, K. E. 1975. Time course and zonal variations of ischemia-induced myocardial cationic electrolyte derangements. Circulation51:860–866.PubMedCrossRefGoogle Scholar
  28. 28.
    Lubbe, W. F., Peisach, M., Pretorius, R., Bruyneel, K. J. J., and Opie, L. H. 1974. Distribution of myocardial blood flow before and after coronary artery ligation in the baboon. Relation to early ventricular fibrillation. Cardiovasc. Res. 8:478–487.PubMedCrossRefGoogle Scholar
  29. 29.
    Maclean, D., Fishbein, M. C, Braunwald, E., and Moroko, P. R. 1978. Long term preservation of ischemic myocardium after experimental coronary artery occlusion. J. Clin. Invest. 61:541–551.PubMedCrossRefGoogle Scholar
  30. 30.
    Malsky, P. M., Vokonas, P. S., Paul, S. J., Robbins, S. L., and Hood, W. B. 1977. Autoradiographic measurement of regional blood flow in normal and ischemic myocardium. Am. J. Physiol. 232:576–583.Google Scholar
  31. 31.
    Marcus, M. L., Kerber, R. E., Ehrhardt, J., and Abboud, F. M. 1975. Three dimensional geometry of acutely ischemic myocardium. Circulation52:254–263.PubMedCrossRefGoogle Scholar
  32. 32.
    Maroko, P. R., Bernstein, E. F., Libby, P., De Laria, G. A., Covell, J. W., Ross, J., Jr., and Braunwald, E. 1972. Effects of intraaortic balloon counterpulsation on the severity of myocardial ischemic injury following acute coronary occlusion. Circulation45:1150–1159.PubMedCrossRefGoogle Scholar
  33. 33.
    Maroko, P. R., Hillis, L. D., and Muller, J. E. 1977. Favourable effects of hyaluronidase on electrocardiographic evidence of necrosis in patients with acute myocardial infarction. N. Engl. J. Med. 296:898–903.PubMedCrossRefGoogle Scholar
  34. 34.
    Maroko, P. R., Kjekshus, J. K., Sobel, B. E., Watanabe, T., Covell, J. W., Ross, J., Jr, and Braunwald, E. 1971. Factors influencing infarct size following experimental coronary artery occlusions. Circulation43:67–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Opie, L. H., Bruyneel, K., and Owen, P. 1975. Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Circulation52:49–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Opie, L. H., and Owen, P. 1976. Effect of glucose-insulin-potassium infusions on arteriovenous differences of glucose and of free fatty acids and on tissue metabolic changes in dogs with developing myocardial infarction. Am. J. Cardiol. 38:310–321.PubMedCrossRefGoogle Scholar
  37. 37.
    Reimer, K. A., and Jenning, R. B. 1979. The “wavefront” of myocardial ischemic cell death. 11. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40:633–644.PubMedGoogle Scholar
  38. 38.
    Reimer, K. A., Lowe, J. E., Rasmussen, M. M., and Jennings, R. B. 1977. The wavefront phenomenon of ischemic cell death. 1) Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation56:786–798.PubMedCrossRefGoogle Scholar
  39. 39.
    Ross, J., Jr. 1976. Electrocardiograph ST-segment analysis in the characterization of myocardial ischemia and infarction. Circulation53(Suppl. 1):73–81.Google Scholar
  40. 40.
    Sayen, J. J., Sheldon, W. F., Horwitz, O., Kuo, P. T., Peirce, G., Zinsser, H. F., and Mead, J., Jr. 1952. Studies of coronary disease in the experimental animal. 11. Polarographic determinations of local oxygen availability in the dogs left ventricle during coronary occlusion and pure oxygen breathing. J. Clin. Invest. 30:932–940.CrossRefGoogle Scholar
  41. 41.
    Schaper, W., and Pasyk, S. 1976. Influence of collateral flow on the ischemic tolerance of the heart following acute and subacute coronary occlusion. Circulation53(Suppl. 1):57–65.Google Scholar
  42. 42.
    Simson, M. B., Harden, W., Barlow, C. H., and Harken, A. H. 1979. Visualization of the distance between perfusion and anoxia along an ischemic border. Circulation60:1151–1155.PubMedCrossRefGoogle Scholar
  43. 43.
    Sobel, B. E., and Shell, W. E. 1973. Jeopardized, blighted and necrotic myocardium. Circulation47:215–216.PubMedCrossRefGoogle Scholar
  44. 44.
    Steenbergen, C, Deeleeuw, G., Barlow, C. H., Chance, B., and Williamson, J. R. 1977. Heterogeneity of the hypoxic state of perfused rat heart. Circ. Res. 41:606–615.PubMedCrossRefGoogle Scholar
  45. 45.
    Sugano, S., Oshino, N., and Chance, B. 1974. Mitochondrial functions under hypoxic conditions: The steady states of cytochrome c reduction and of energy metabolism. Biochim. Biophys. Acta. 347:340–358.PubMedCrossRefGoogle Scholar
  46. 46.
    Vokonas, P. S., Malsky, P. M., Paul, S. J., Robbins, S. L., and Hood, W. B. 1978. Radioautographic studies in experimental myocardial infarction: Profiles of ischemic blood flow and quantification of infarct size in relation to magnitude of ischemic zone. Am. J. Cardiol42:67–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Yellon, D. M. 1979. A multiple biopsy gun for the study of three dimensional metabolic geometry. J. Physiol. (Lond.)293:5–6.Google Scholar
  48. 48.
    Yellon, D. M., Hearse, D. J., Crome, R., Grannell, J., and Wyse, R. K. M. 1981. Characterization of the lateral interface between normal and ischemic tissue during acute myocardial infarction. Am. J. Cardiol47:1233–1239.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • D. J. Hearse
    • 1
  • D. M. Yellon
    • 1
  1. 1.The Rayne InstituteSt. Thomas’ HospitalLondonEngland

Personalised recommendations