The Permissive Role of Catecholamines in the Pathogenesis of Hamster Cardiomyopathy

  • G. Jasmin
  • L. Proschek


It was previously shown that β-adrenergic blockers exert a protective action on the development of heart necrotic changes in cardiomyopathic hamsters. To further investigate the possible role of catecholamines in the pathogenesis of the hamster hereditary cardiomyopathy, the ventricular adrenergic nerve terminals were visualized by fluorescence histochemistry, and NE uptake and turnover were determined after i.v. injection of labeled NE. It was found that the fluorescent nerve endings strongly proliferate with the occurrence of heart necrotic changes. With healing of the myocardial lesions, the difference between control and myopathic hearts is less apparent, and NE nerve endings are literally absent in the terminal stage of the disease. There was a marked increase in NE uptake during the necrotic stage and, at the same time, a considerable rise in elimination rate constant with a maximum level at terminal stage, suggesting that the NE turnover is related to the progression of the disease. In light of the present findings, it can be surmised that NE plays a permissive role in the genesis of the hamster disease by promoting the heart necrotic changes.


Syrian Hamster Elimination Rate Constant Terminal Stage Necrotic Change Heart Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelakos, E. T., King, M. P., and Carballo, L. 1973. Cardiac adrenergic innervation in hamsters with hereditary myocardiopathy: Chemical and histochemical studies. In: E. Bajusz and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 2: Cardiomyopathies, pp. 519–531. University Park Press, Baltimore.Google Scholar
  2. 2.
    Büchner, F., Onishi, S., and Wada, A. 1978. Cardiomyopathy Associated with Systemic Myopathy, pp. 46–91. Urban & Schwarzenberg, Baltimore, Munich.Google Scholar
  3. 3.
    Ferguson, G. A., 1971. Statistical Analysis in Psychology and Education, 3rd ed., pp. 96–119. McGraw-Hill, New York.Google Scholar
  4. 4.
    Fleckenstein, A. 1971. Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: P. Harris and L. Opie (eds.), Calcium and the Heart, pp. 135–188. Academic Press, London.Google Scholar
  5. 5.
    Jasmin, G. 1966. Morphologic effects of vasoactive drugs. Can. J. Physiol. Pharmacol. 44:367–372.CrossRefGoogle Scholar
  6. 6.
    Jasmin, G. 1969. Factors influencing the production of cardiomyopathies by methoxamine and metaraminol. Ann. N.Y. Acad. Sci. 156:333–343.PubMedCrossRefGoogle Scholar
  7. 7.
    Jasmin, G., and Bajusz, E. 1973. Polymyopathie et cardiomyopathie héréditaire chez le hamster de Syrie. Inhibition sélective des lésions du myocarde. Ann. Anat. Pathol. (Paris) 18:49–66.Google Scholar
  8. 8.
    Jasmin, G., and Eu, H. Y. 1979. Cardiomyopathy of hamster dystrophy. Ann. N.Y. Acad. Sci. 317:46–58.PubMedGoogle Scholar
  9. 9.
    Jasmin, G., and Proschek, L. 1980. Prevention of myocardial degeneration in hamsters with hereditary cardiomyopathy. In: A. Fleckenstein and H. Roskamm (eds.), Calcium-Antagonismus, pp. 144–150. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  10. 10.
    Jasmin, G., and Proschek, L. 1982. Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions in the UM-X7.1 line. Muscle Nerve 5:20–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Jasmin, G., Solymoss, B., and Proschek, L. 1979. Therapeutic trials in hamster dystrophy. Ann. N.Y. Acad. Sci. 317:338–348.PubMedGoogle Scholar
  12. 12.
    Kabara, J. J., Riggin, R. M., and Kissinger, P. T. 1976. Abnormal levels of urinary catecholamines in dystrophic mice and hamsters. Proc. Soc. Exp. Biol. Med. 151:168–172.PubMedGoogle Scholar
  13. 13.
    Landsberg, L., and Axelrod, J. 1968. Influence of pituitary, thyroid and adrenal hormones on norepinephrine turnover and metabolism in the rat heart. Circ. Res. 22:559–571.PubMedCrossRefGoogle Scholar
  14. 14.
    Laties, A.M., Lund, R., and Jacobowitz, D. 1967. A simplified method for the histochemical localization of cardiac catecholamine-containing nerve fibers. J. Histochem. Cytochem. 15:535–541.PubMedCrossRefGoogle Scholar
  15. 15.
    Lossnitzer, K., Morh, W., Konrad, A., and Guggenmoos, R. 1978. Hereditary cardiomyopathy in the Syrian golden hamsters. Influence of verapamil as calcium antagonist. In: M. Kaltenbach, F. Loogen, and E. G. J. Olsen (eds.), Cardiomyopathy and Myocardial Biopsy, pp. 27–37. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  16. 16.
    Mendell, J. R., Higgins, R., Sahek, Z., and Cosmos, E. 1979. Relevance of genetic animal models of muscular dystrophy to human muscular dystrophies. Ann. N.Y. Acad. Sci. 317:409–430.PubMedGoogle Scholar
  17. 17.
    Pearse, A. G. E. 1964. The histochemistry and electron microscopy of obstructive cardiomyopathy. In: G. E. W. Wolstenholme and M. O’Connor (eds.), Cardiomyopathies, pp. 132–171. Churchill, London.Google Scholar
  18. 18.
    Proschek, L., and Jasmin, G. 1982. Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle Nerve 5:26–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Reimer, K. A., Rasmussen, M. M., and Jennings, R. B. 1976. On the nature of protection by propranolol against myocardial necrosis after temporary coronary occlusion in dogs. Am. J. Cardiol. 37:520–527.PubMedCrossRefGoogle Scholar
  20. 20.
    Rona, G., Hüttner, I., and Boutet, M. 1977. Microcirculatory changes in myocardium with particular reference to catecholamine-induced cardiac muscle cell injury. In: H. Meessen (ed.), Handbuch der Allegemeinen Pathologie HI/7. Mikrozirkulation/Microcirculation, pp. 791–888. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  21. 21.
    Singh, J. N., Dhalla, N. S., McNamara, D. B., Bajusz, E., and Jasmin, G. 1975. Membrane alteration in failing hearts of cardiomyopathic hamsters. In: A. Fleckenstein and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 6: Pathophysiology and Morphology of Myocardial Cell Alteration, pp. 259–268. University Park Press, Baltimore.Google Scholar
  22. 22.
    Slack, B. E., Boegman, R. J., Downie, J. W., and Jasmin, G. 1980. Cardiac membrane cholesterol in dystrophic and verapamil-treated hamsters. J. Mol. Cell. Cardiol. 12:179–185.PubMedCrossRefGoogle Scholar
  23. 23.
    Sole, M. J., Kamble, A. B., and Hussain, M. N. 1977. A possible change in the rate-limiting step for cardiac norepinephrine synthesis in the cardiomyopathic Syrian hamster. Circ. Res. 41:814–817.PubMedCrossRefGoogle Scholar
  24. 24.
    Sperelakis, N., and Schneider, J. A. 1976. A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am. J. Cardiol. 37:1079–1085.PubMedCrossRefGoogle Scholar
  25. 25.
    Todd, G. L., Cullan, G. E., and Cullan, G. M. 1980. Isoproterenol-induced myocardial necrosis and membrane permeability alterations in isolated perfused rabbit heart. Exp. Mol. Pathol. 33:43–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • G. Jasmin
    • 1
  • L. Proschek
    • 1
  1. 1.Department of Pathology, Faculty of MedicineUniversity of MontrealMontrealCanada

Personalised recommendations