Skip to main content

Effect of Exogenous Amino Acids on the Contractility and Nitrogenous Metabolism of Anoxic Heart

  • Chapter

Abstract

The effect of exogenous glutamic acid and arginine on the contractility of isolated perfused rat heart and on the metabolism of some nitrogenous compounds was studied. Sixty-minute anoxic perfusion (95% N2 + 5% CO2) led to a fall in developed isovolumic pressure and an elevation in diastolic pressure, to an increase in the production of alanine, glutamine, and ammonia, and to a decrease in the tissue content of aspartate and glutamate. The total pool of free amino acids and taurine under these conditions remained unchanged. Subsequent 40-min reoxygenation partially restored the contractile function. Addition of 3.5 mM glutamic acid or 5 mM arginine into the perfusate before anoxia resulted in a higher level of developed pressure and a lower level of diastolic pressure during anoxia and almost complete recovery of cardiac function after subsequent reoxygenation. Both amino acids had no effect on ammonia formation by the anoxic heart but enhanced its binding in myocardial tissue via formation of glutamine and urea. It is suggested that the exogenous amino acid effect on anoxic heart is mediated by activation of substrate phosphorylation rather than the ability to bind tissue ammonia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunstein, A. E. 1969. Les voies principales de l’assimilation et dissimilation d l’azote chez les animaux. Adv. Enzymol. 19:335–389.

    Google Scholar 

  2. Deuticke, B., Gerlach, E., and Dierkesmann, K. 1966. Abbau freier Nucleotide im Herz Skelettmusckel, Gehirn und Lebel der Ratte bei Sauerstoffmangel. Pfluegers Arch. 292:239–254.

    Article  CAS  Google Scholar 

  3. Gerlach, E., Deuticke, B., and Dreibach, R. H. 1963. Nucleotid Abbau im Herzmuskel bei Sauerstoffmangel und seine moglicke Bedeutung fur die Coronardurchblutung. Naturwissenschaften 50:228–229.

    Article  CAS  Google Scholar 

  4. Gmeiner, R., Knapp, E., and Dienstl, F. 1974. Effect of insulin on the performance of the hypoxic rat heart. J. Mol. Cell. Cardiol. 6:201–206.

    Article  PubMed  CAS  Google Scholar 

  5. Hochachka, P., Owen, T. G., Allen, J. F., and Whittow, G. C. 1975. Multiple end products of anaerobiosis in diving vertebrates. Comp. Biochem. Physiol. 508:17–22.

    Google Scholar 

  6. Imai, S., Riley, A. L., and Berne, R. M. 1964. Effect of ischemia on adenine nucleotides in cardiac and skeletal muscle. Circ. Res. 15:443–450.

    Article  PubMed  CAS  Google Scholar 

  7. Kato, T. 1968. Myocardial amide nitrogen metabolism with special reference to ammonia metabolism. Jpn. Circ. J. 32:1401–1416.

    Article  PubMed  CAS  Google Scholar 

  8. Kedenburg, C. P. 1971. A lithium buffer system for accelerated single-column amino acids analysis. Anal. Biochem. 40:35–42.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi, T. 1967. Myocardial amide-nitrogen metabolism with special reference to ammonia metabolism. Jpn. Circ. J. 31:33–38.

    Article  PubMed  CAS  Google Scholar 

  10. Kotz, J. L., and Galiautdinov, G. S. 1980. Protection of ischemic myocardium with glutamic acid. J. Mol Cell. Cardiol 12(Suppl. 1):80.

    Google Scholar 

  11. Lowenstein, I. M. 1972. Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiol Rev. 52:382–414.

    PubMed  CAS  Google Scholar 

  12. McLeod, D. P., and Daniel, E. E. 1965. Influence of glucose on the transmembrane action potential of anoxic papillary muscle. J. Gen. Physiol. 48:887–899.

    Article  Google Scholar 

  13. Pisarenko, O. I., Artemov, A. V., and Smirnov, V. N. 1980. Study of nitrogen metabolism in the cardiac muscle using the isotope 15N. In: Energy Transport, Protein Synthesis, and Hormonal Control of Heart Metabolism. (Fourth USA-USSR Joint Symposium on Myocardial Metabolism, Tashkent, USSR, Sept. 14–16, 1979), pp. 329–351. NIH Publication, Bethesda.

    Google Scholar 

  14. Rau, E. E., Shine, K. I., Gervais, A., Douglas, A. M., and Amos, E. C. III. 1979. Enhanced mechanical recovery of anoxic and ischemic myocardium by amino acid perfusion. Am. J. Physiol. 236(6):H873-H879.

    PubMed  CAS  Google Scholar 

  15. Sanborn, T., Gavin, W., Berkowitz, S., Perille, T., and Lesch, M. 1979. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart. Am. J. Physiol. 237(5):H535-H541.

    PubMed  CAS  Google Scholar 

  16. Silakova, A. I., and Yavilyakova, A. 1964. [On participation of protein amide nitrogen in ammonia formation in muscle.] Vopr. Med. Khim. 10:40–43.

    PubMed  CAS  Google Scholar 

  17. Smirnov, V. N., Asafov, G. B., Cherpachenko, N. M., Chernousova, G. B., Mozzhechkow, V. T., Krivov, V. I., Ovchinnikov, Iu. A., Merimson, V. G., Rozynov, B. G., and Chumachenko, M. T. 1974. Ammonia neutralization and urea synthesis in cardiac muscle. Circ. Res. 35:(Suppl. 3):58–69.

    PubMed  Google Scholar 

  18. Taegtmeyer, H. 1978. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscle. Circ. Res. 43:805–815.

    Article  Google Scholar 

  19. Taegtmeyer, H., Peterson, M. B., Ragavan, V. V., Ferguson, A. G., and Lesch, M. 1977. De nova alanine synthesis in isolated oxygen-deprived rabbit myocardium. J. Biol. Chem. 252:5010–5018.

    PubMed  CAS  Google Scholar 

  20. Takahashi, A. 1967. Myocardial protein metabolism following coronary occlusion. Jpn. Circ. J. 31:581–600.

    Article  PubMed  CAS  Google Scholar 

  21. Thorn, W., and Heimann, J. 1958. Effect of anoxia, ischemia, asphyxia and reduced temperature on the ammonia in the brain and other organs. J. Neurochem. 2:166–177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pisarenko, O.I., Solomatina, E.S., Studneva, I.M., Ivanov, V.E., Kapelko, V.I., Smirnov, V.N. (1983). Effect of Exogenous Amino Acids on the Contractility and Nitrogenous Metabolism of Anoxic Heart. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics