Effect of Exogenous Amino Acids on the Contractility and Nitrogenous Metabolism of Anoxic Heart

  • O. I. Pisarenko
  • E. S. Solomatina
  • I. M. Studneva
  • V. E. Ivanov
  • V. I. Kapelko
  • V. N. Smirnov

Abstract

The effect of exogenous glutamic acid and arginine on the contractility of isolated perfused rat heart and on the metabolism of some nitrogenous compounds was studied. Sixty-minute anoxic perfusion (95% N2 + 5% CO2) led to a fall in developed isovolumic pressure and an elevation in diastolic pressure, to an increase in the production of alanine, glutamine, and ammonia, and to a decrease in the tissue content of aspartate and glutamate. The total pool of free amino acids and taurine under these conditions remained unchanged. Subsequent 40-min reoxygenation partially restored the contractile function. Addition of 3.5 mM glutamic acid or 5 mM arginine into the perfusate before anoxia resulted in a higher level of developed pressure and a lower level of diastolic pressure during anoxia and almost complete recovery of cardiac function after subsequent reoxygenation. Both amino acids had no effect on ammonia formation by the anoxic heart but enhanced its binding in myocardial tissue via formation of glutamine and urea. It is suggested that the exogenous amino acid effect on anoxic heart is mediated by activation of substrate phosphorylation rather than the ability to bind tissue ammonia.

Keywords

Glutamic Acid Aspartic Acid Anoxic Condition Diastolic Pressure Free Ammonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braunstein, A. E. 1969. Les voies principales de l’assimilation et dissimilation d l’azote chez les animaux. Adv. Enzymol. 19:335–389.Google Scholar
  2. 2.
    Deuticke, B., Gerlach, E., and Dierkesmann, K. 1966. Abbau freier Nucleotide im Herz Skelettmusckel, Gehirn und Lebel der Ratte bei Sauerstoffmangel. Pfluegers Arch. 292:239–254.CrossRefGoogle Scholar
  3. 3.
    Gerlach, E., Deuticke, B., and Dreibach, R. H. 1963. Nucleotid Abbau im Herzmuskel bei Sauerstoffmangel und seine moglicke Bedeutung fur die Coronardurchblutung. Naturwissenschaften 50:228–229.CrossRefGoogle Scholar
  4. 4.
    Gmeiner, R., Knapp, E., and Dienstl, F. 1974. Effect of insulin on the performance of the hypoxic rat heart. J. Mol. Cell. Cardiol. 6:201–206.PubMedCrossRefGoogle Scholar
  5. 5.
    Hochachka, P., Owen, T. G., Allen, J. F., and Whittow, G. C. 1975. Multiple end products of anaerobiosis in diving vertebrates. Comp. Biochem. Physiol. 508:17–22.Google Scholar
  6. 6.
    Imai, S., Riley, A. L., and Berne, R. M. 1964. Effect of ischemia on adenine nucleotides in cardiac and skeletal muscle. Circ. Res. 15:443–450.PubMedCrossRefGoogle Scholar
  7. 7.
    Kato, T. 1968. Myocardial amide nitrogen metabolism with special reference to ammonia metabolism. Jpn. Circ. J. 32:1401–1416.PubMedCrossRefGoogle Scholar
  8. 8.
    Kedenburg, C. P. 1971. A lithium buffer system for accelerated single-column amino acids analysis. Anal. Biochem. 40:35–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Kobayashi, T. 1967. Myocardial amide-nitrogen metabolism with special reference to ammonia metabolism. Jpn. Circ. J. 31:33–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Kotz, J. L., and Galiautdinov, G. S. 1980. Protection of ischemic myocardium with glutamic acid. J. Mol Cell. Cardiol 12(Suppl. 1):80.Google Scholar
  11. 11.
    Lowenstein, I. M. 1972. Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiol Rev. 52:382–414.PubMedGoogle Scholar
  12. 12.
    McLeod, D. P., and Daniel, E. E. 1965. Influence of glucose on the transmembrane action potential of anoxic papillary muscle. J. Gen. Physiol. 48:887–899.CrossRefGoogle Scholar
  13. 13.
    Pisarenko, O. I., Artemov, A. V., and Smirnov, V. N. 1980. Study of nitrogen metabolism in the cardiac muscle using the isotope 15N. In: Energy Transport, Protein Synthesis, and Hormonal Control of Heart Metabolism. (Fourth USA-USSR Joint Symposium on Myocardial Metabolism, Tashkent, USSR, Sept. 14–16, 1979), pp. 329–351. NIH Publication, Bethesda.Google Scholar
  14. 14.
    Rau, E. E., Shine, K. I., Gervais, A., Douglas, A. M., and Amos, E. C. III. 1979. Enhanced mechanical recovery of anoxic and ischemic myocardium by amino acid perfusion. Am. J. Physiol. 236(6):H873-H879.PubMedGoogle Scholar
  15. 15.
    Sanborn, T., Gavin, W., Berkowitz, S., Perille, T., and Lesch, M. 1979. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart. Am. J. Physiol. 237(5):H535-H541.PubMedGoogle Scholar
  16. 16.
    Silakova, A. I., and Yavilyakova, A. 1964. [On participation of protein amide nitrogen in ammonia formation in muscle.] Vopr. Med. Khim. 10:40–43.PubMedGoogle Scholar
  17. 17.
    Smirnov, V. N., Asafov, G. B., Cherpachenko, N. M., Chernousova, G. B., Mozzhechkow, V. T., Krivov, V. I., Ovchinnikov, Iu. A., Merimson, V. G., Rozynov, B. G., and Chumachenko, M. T. 1974. Ammonia neutralization and urea synthesis in cardiac muscle. Circ. Res. 35:(Suppl. 3):58–69.PubMedGoogle Scholar
  18. 18.
    Taegtmeyer, H. 1978. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscle. Circ. Res. 43:805–815.CrossRefGoogle Scholar
  19. 19.
    Taegtmeyer, H., Peterson, M. B., Ragavan, V. V., Ferguson, A. G., and Lesch, M. 1977. De nova alanine synthesis in isolated oxygen-deprived rabbit myocardium. J. Biol. Chem. 252:5010–5018.PubMedGoogle Scholar
  20. 20.
    Takahashi, A. 1967. Myocardial protein metabolism following coronary occlusion. Jpn. Circ. J. 31:581–600.PubMedCrossRefGoogle Scholar
  21. 21.
    Thorn, W., and Heimann, J. 1958. Effect of anoxia, ischemia, asphyxia and reduced temperature on the ammonia in the brain and other organs. J. Neurochem. 2:166–177.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • O. I. Pisarenko
    • 1
  • E. S. Solomatina
    • 1
  • I. M. Studneva
    • 1
  • V. E. Ivanov
    • 1
  • V. I. Kapelko
    • 1
  • V. N. Smirnov
    • 1
  1. 1.Department of Experimental Cardiology, USSR Cardiology Research CenterAcademy of Medical SciencesMoscowUSSR

Personalised recommendations