Skip to main content

A Possible Mechanism of Adriamycin Cardiotoxicity

Inhibition of NADP-Linked Isocitrate Dehydrogenase

  • Chapter
Advances in Myocardiology

Abstract

In heart muscle, NADP-linked isocitrate dehydrogenase activity is particularly high when compared with that of the other representative NADPH-generating enzyme, glucose-6-phosphate dehydrogenase. Approximately 80% of cardiac NADP-linked isocitrate dehydrogenase activity originates in the mitochondria. Adriamycin inhibited the activity of both mitochondrial and cytoplasmic NADP-linked isocitrate dehydrogenase dose dependently but had no effect on glucose-6-phosphate dehydrogenase. The inhibition was kinetically distinguished as noncompetitive. Preincubation of crude cardiac enzyme preparations with adriamycin enhanced the inhibition time dependently for 45 min. However, there was no evidence to suggest that the metabolites of adriamycin produced in this system were active as inhibitors. Adria-mycin-binding protein was fractionated by affinity chromatography, but NADP-linked isocitrate dehydrogenase activity was not detected in this fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alp, P. R., Newsholme, E. A., and Zammit, V. A. 1976. Activities of citrate synthase and NAD-linked and NADP-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem. J. 154:689–700.

    PubMed  CAS  Google Scholar 

  2. Asbell, M. A., Schwartzbach, E., Bullock, F. J., and Yesair, D. W., 1972. Daunomycin and adriamycin metabolism via reductive glycosidic cleavage. J. Pharmacol. Ther. 182:63–69.

    CAS  Google Scholar 

  3. Atassi, G., and Tagnon, H. J. 1974. Comparison of adriamycin with the DNA-adriamycin complex in chemotherapy of L 1210 leukemia. Europ. J. Cancer. 10:399–403.

    CAS  Google Scholar 

  4. Barry, T. A., and Rosenkrantz, H. 1962. The level of isocitric acid dehydrogenase in tissues of vitamin E-deficient rabbits. J. Nutr. 76:447–452.

    PubMed  CAS  Google Scholar 

  5. Bert, E., and Bergmeyer, H. U. 1974. Isocitrate dehydrogenase. In: H. U. Bergmeyer, (ed.), Methods of Enzymatic Analysis, Vol. 2, pp. 624–627. Academic Press, New York.

    Chapter  Google Scholar 

  6. Blum, R. H., and Carter, S. K. 1974. Adriamycin, a new anticancer drug with significant clinical activity. Ann. Intern. Med. 80:249–259.

    Article  PubMed  CAS  Google Scholar 

  7. Bonadonna, G., Monfardini, S., De Lena, M., and Rossai-Bellani, F. 1969. Clinical evaluation of adriamycin, a new antitumor antibiotic. Br. Med. J. 3:503–506.

    Article  PubMed  CAS  Google Scholar 

  8. Bristow, M. R., Thompson, P. D., Martin, R. P., Marson, J. W., Billingham, M. E., and Harrison, D. C. 1978. Early anthracycline cardiotoxicity. Am. J. Med. 65:823–832.

    Article  PubMed  CAS  Google Scholar 

  9. Crooke, S. T., Duvernay, V. H., Galvan, L., and Prestayko, A. W., 1978. Structure-activity relationships of anthracyclines relative to effects on macromolecular syntheses. Mol. Pharmacol. 14:290–298.

    PubMed  CAS  Google Scholar 

  10. Dhalla, N. S., Fedelesova, M., and Toffler, I. 1971. Biochemical alterations in skeletal muscle of vitamin E deficient rats. Can. J. Biochem. 49:1202–1208.

    Article  CAS  Google Scholar 

  11. Di Marco, A., Gaetani, M., and Scarpinate, B. 1969. Adriamycin (NSC-123, 127): A new antibiotic with antitumor activity. Cancer Chemother. Rep. [Part 1] 53:33–37.

    Google Scholar 

  12. Edwin, E. E., Diplock, A. T., Bunyan, J., and Green, J. 1961. Studies on vitamin E. Biochem. J. 79:91–104.

    CAS  Google Scholar 

  13. Gloch, G. H., and Mc Lean, P. 1953. Further studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6 phosphogluconate dehydrogenase of rat liver. Biochem. J. 55:400–408.

    Google Scholar 

  14. Gortner, R. A., Jr., and Milano, A. F. 1963. Effect of tocopherol depletion on muscle nucleic acid and creatine levels in the frog. Am. J. Physiol. 204:168–170.

    PubMed  CAS  Google Scholar 

  15. Gosolvez, M., Van Rossam, G. D. V., and Blanco, M. F., 1979. Inhibition of sodium-potassium activated adenosine 5′ triphosphate and ion transport by adriamycin. Cancer Res. 39:257–261.

    Google Scholar 

  16. Hatefi, Y., Jurtshuk, P., and Haavik, A. G. 1961. Studies on the electron transport system. XXXII. Respiratory control in beef heart mitochondria. Arch. Biochem. Biophys. 94:148–155.

    Article  PubMed  CAS  Google Scholar 

  17. Kajiwara, H., Shimamoto, F., and Nakagami, K. 1980. Aclacinomycin cardiomyopathy. In: Abstracts, 3rd Congress of Cardiac Metabolism, Kyoto, Japan, p. 20.

    Google Scholar 

  18. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  19. Lucacchini, A., Martini, C, Segnini, D., and Ronca, G. 1979. Evidence of soluble proteins binding adriamycin by affinity chromatography. Experientia. 35:1148–1149.

    Article  PubMed  CAS  Google Scholar 

  20. March, S. C., Parikh, I., and Cuatrecasas, P. 1974. A simple method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem. 60:149–152.

    Article  PubMed  CAS  Google Scholar 

  21. Myer, C. E., McGuire, W. P., Liss, R. H., Ifrim, I., Grotzinger, K., and Young, R. C. 1977. Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167.

    Article  Google Scholar 

  22. Negishi, T., and Takahira, H. 1973. [The absorption, excretion, distribution and metabolism of adriamycin.] Kiso To Rinsho 7:425–431.

    Google Scholar 

  23. Olson, H. M., and Capen, C. C. 1977. Subacute cardiotoxicity of adriamycin in the rat. Lab. Invest. 37:386–394.

    PubMed  CAS  Google Scholar 

  24. Trout, A., Campeneere, D. D., and De Duve, C. 1972. Chemotherapy through lysosomes with a DNA-daunomycin complex. Nature [New Biol.] 239:110–112.

    Article  Google Scholar 

  25. Yasumi, M., Minaga, T., Nakamura, K., Kimura, I., Maeda, M., Yoneda, S., Kizu, A., and Ijichi, H. 1980. The studies on cardiotoxicity by adriamycin. In: Abstracts, 3rd Congress of Cardiac Metabolism, Kyoto, Japan, p. 19.

    Google Scholar 

  26. Yasumi, M., Minaga, T., Nakamura, K., Kizu, A., and Ijichi, H. 1980. Inhibition of cardiac NADP-linked isocitrate dehydrogenase by adriamycin. Biochem. Biophys. Res. Commun. 93:631–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minaga, T., Yasumi, M., Nakamura, K., Kimura, I., Kizu, A., Ijichi, H. (1983). A Possible Mechanism of Adriamycin Cardiotoxicity. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics