Oxygen Activation by Fungal and Bacterial Toxins

  • Ingrid Heiser
  • Julia Koehl
  • Erich F. Elstner


Toxic metabolites produced by pathogenic fungi and bacteria contribute to symptoms development in infested plants or animals and may cause serious diseases (Yoder, 1980; Schäfer, 1994). Fungal phytotoxins are roughly divided into two groups: (a) host-selective toxins are produced only by a few fungal species (e.g. Alternaria, Cochliobolus) and are toxic only to the hosts of these pathogens; they show little or no toxicity to nonsusceptible plants, and (b) non-selective toxins are produced by a number of fungi and bacteria and cause damage not only on the host plant but also on other plant species that are not normally attacked by the pathogen in nature including animal and man if the invaded plants are used as foodstuffs. The mechanisms of toxicity i.e. the modes of action of some non-selective phytotoxins are already known, some mechanisms are still tentative. Besides this, these toxins may either be toxic per se or establish their toxicity via activation of certain host cell-types such as leukocytes. In plants the disease symptoms caused by non-selective phytotoxins are often very similar, mostly visible as chlorotic lesions and/or wilt and often very similar to herbicide effects. At the subcellular level destruction of membranes in toxin treated plants is observed. Mostly a breakdown of lipids together with pigment degradation occurs as symptoms of lipid peroxidation (Elstner and Osswald, 1980; Elstner, 1982) after the oxygen metabolism of the plant was impaired. As a consequence of this reactive oxygen species (ROS) like superoxide (O 2 ), hydrogen peroxide (H2O2) or hydroxyl radicals (·OH) may be formed (Elstner and Osswald, 1994; Heiser et al., 1998c).


Oxygen Activation Photosynthetic Electron Transport Fusarium Solani Lethal Toxin Thioctic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achor, D. S., Nemec, S., and Baker, R.A., 1993, Effects of Fusarium solani naphthazarin toxins on the cytology and ultrastructure of rough lemon seedlings, Mycopathologia 123: 117–126.CrossRefGoogle Scholar
  2. Agrios, G.N., 1997, Plant Pathology, Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto.Google Scholar
  3. Akuzawa, S., Yamaguchi, H., Masuda, T., and Ueno, Y., 1992, Radical-mediated modification ofdeoxyguanine and deoxyribose by luteoskyrin and related anthraquinones, Mutat. Res. 266: 63–69.PubMedCrossRefGoogle Scholar
  4. Albrecht, A., 1996, Naphthochinoide Verbindungen als Redoxmediatoren in phytopathologischen Prozessen. Biochemischer Wirkmechanismus des Toxins Dhhydrofusarubin von Fusarium solani, Ph. D. Thesis, Technical University of Munich, Germany.Google Scholar
  5. Albrecht, A., Heiser, I., Baker, R., Nemec, S., Elstner, E.F., and Oßwald, W., 1998, Effects of the Fusarium solani toxin ihydrofusarubin on tobacco leaves and spinach chloroplasts, J. Plant Physiol. 153: 462–468.CrossRefGoogle Scholar
  6. Anusevicius, Z.J., and Cènas, N.K., 1993, Dihydrolipoamide-mediated redox cycling of quinones, Archives of Biochemistry and Biophysics 302: 420–424.PubMedCrossRefGoogle Scholar
  7. Ardus, J.A., Gillman, I.G., and Manderville, R.A., 1998, On the role of copper and iron in DANN cleavage by ochratoxin A. Structure-activity relationships in metal binding and copper-mediated DANN cleavage, Can. J Chem. 76: 907–918.CrossRefGoogle Scholar
  8. Asada, K., 1992, Production and scavenging of active oxygen in chloroplasts, in: Molecular Biology of Free Radical Scavenging Systems, Cold Spring Harbor Laboratory Press, USA.Google Scholar
  9. Assante, G., Locci, R., Camarda, L., Merlini, L., and Nasini, G., 1977, Screening of the genus Cercospora for secondary metabolites, Phytochemistry 16: 243–246.CrossRefGoogle Scholar
  10. Baywater, J., 1959, Infection of peas by Fusarium solani - r. martii forma 2 and the spread of the pathogen, Trans. Br. Mycol. Soc. 42: 201–212.CrossRefGoogle Scholar
  11. Blein, J.P., Milat, M.L., and Ricci, P., 1991, Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, Plant Physiol. 95: 486–491.PubMedCrossRefGoogle Scholar
  12. Bóger, P., and Sandmann, G., 1990, Modem herbicides affecting typical plant processes,. in: Chemistry of Plant Protection, W.S. Bowers, W. Ebing, D. Martin and R. Wegler, eds., Springer Publ. 6, Berlin, Heidelberg.Google Scholar
  13. Bourque, S., Ponchet, M., Binet, M.N., Ricci, P., Pugin, A., and Lebrun-Garcia, A., 1998, Comparison of binding properties and early biological effects of elicitins in tobacco cells, Plant Physiol. 118: 1317–1326.PubMedCrossRefGoogle Scholar
  14. Britigan, B.E., Rasmussen, G.T., and Cox, C.D., 1997, Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa sederophore pyochelin, Infect. Immun. 65: 1071–1076.PubMedGoogle Scholar
  15. Buffinton, G.D., Öllinger, K., Brunmark, A., and Cadenas, E., 1989, DT-diaphorase-catalyzed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates, Biochem. J. 257: 561–568.PubMedGoogle Scholar
  16. Cantin-Esnault, D., Richard, J.M., and Jeunet A., 1998, Generation of oxygen radicals from iron complex of orellanine, a mushroom nephrotoxin; preliminary ESR and spin trapping studies, Free Radic. Res. 28: 45–58.PubMedCrossRefGoogle Scholar
  17. Cavallini, L., Bindoli, A., Macri, F., and Vianello, A., 1979, Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity, Chem.-Biol. Interactions 28: 139–146.CrossRefGoogle Scholar
  18. Csinos, A., and Hendrix, J., 1978, Toxin produced by Phytophtora cryptogea active on excised tobacco leaves, Can. J. Bot. 55: 1156–1162.Google Scholar
  19. Crabtree, J.E., 1996, Gastic mucosal inflammatory responses to Helicobacter pylori, Aliment.Pharmcol.Ther. 10 (Suppl.l): 29–37.Google Scholar
  20. Chaterjee, P., 1958, The bean rot complex in Idaho, Phytopathology 48: 197–200.Google Scholar
  21. Daub, M.E., 1982a, Cercosporin, a photosensitizing toxin from Cercospora species, Phytopathology 72: 370–374.CrossRefGoogle Scholar
  22. Daub, M.E., 1982b, Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin, Plant Physiol. 69: 1361–1364.PubMedCrossRefGoogle Scholar
  23. Daub, M.E., and Briggs, S.P., 1983, Changes in tobacco cell membrane composition and structure caused by cercosporin, Plant Physiol. 71: 763–766.PubMedCrossRefGoogle Scholar
  24. Daub, M.E., and Hangarter, R.P., 1983, Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin, Plant Physiol. 73: 855–857.PubMedCrossRefGoogle Scholar
  25. Daub, M.E., Leisman, G.B., Clark, R.A., and Bowden, E.F., 1992, Reductive detoxification as a mechanism of fungal resistance to singlet oxygen-generating photosensitizers, Proc. Natl. Acad. Sci. USA 89: 9588–9592.PubMedCrossRefGoogle Scholar
  26. Ding, W.X., Shen, H.M., Zhu, H.G., and Ong, C.N., 1998, Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes, Env iron. Res. 78: 12–18.Google Scholar
  27. Dimheimer, G., 2000, A review of recent advances in the genotoxicity of carcinogenic mycotoxins, in: Carcinogenic and Anticarcinogenic Factors in Food (DFG-Symposium), G. Eisenbrand et al., eds., Wiley-VCH Verlag, Weinheim, Germany.Google Scholar
  28. Durbin, R.D., 1981, Toxins in Plant Disease, Academic Press, New York, London, San Francisco.Google Scholar
  29. Durst, F., Benneviste, L., Salatin, J.-P., and Werck, D., 1994, Function and diversity of plant cytochrome P450, in: Cytochrome P450 8’ h International Conference, M.C. Lechner, ed., John Libbey Eurotext, Paris.Google Scholar
  30. Elstner, E.F., 1982, Oxygen activation and oxygen toxicity, Annu. Rev. Plant Physiol 33: 73–96.CrossRefGoogle Scholar
  31. Elstner, E.F., and Oßwald, W.F., 1980, Chlorophyll photobleaching and ethane production in dichlorophenyldimethylurea(DCMU)- or paraquat-treated Euglena gracilis cells, Z. Naturforsch. 35c: 129–135.Google Scholar
  32. Elstner, E. F., and Oßwald, W.F., 1994, Mechanism of oxygen activation in plant stress, Proc. Roy. Soc. Edinburgh 102b: 131–154.Google Scholar
  33. Elstner, E.F., Saran, M., Bors, W., and Lengfelder, E., 1978, Oxygen activation in isolated chloroplasts: Mechanism of ferredoxin-dependent ethylene formation from methionine, Eur. J. Biochem. 89: 61–66.PubMedCrossRefGoogle Scholar
  34. Elstner, E.F., Oßwald, W., and Youngman, R.J., 1985, Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea ables) needles: advances in phytomedical diagnostics, Experientia 41: 591–597.CrossRefGoogle Scholar
  35. Forrester, L.M., Neal, G.E., Judah, D.J., Glancey, M.J., and Wolf, C.R., 1990, Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver, Proc. Natl. Acad. Sci. USA 87: 8306–8310.PubMedCrossRefGoogle Scholar
  36. Foyer, C.H., and Halliwell, B., 1976, The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta 133: 21–25.CrossRefGoogle Scholar
  37. Franich, R.A., Carson, M.J., and Carson, S.D., 1986, Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of Pinus radiata families to Dothistroma pipi, Physiol. Mol. Plant Pathol. 28: 267–286.CrossRefGoogle Scholar
  38. Gillman, LG., Day, C.S., and Manderville, R.A., 1998a, Stepwise formation of a nonsymmetric dinuclear copper complex ofochratoxin A, Inorg.Chem. 37: 6385–6388.CrossRefGoogle Scholar
  39. Gillman, LG., Yezek, J.M., and Manderville, R.A., 19986, Ochratoxin A acts as a photoactivatable DANN cleaving agent, Chem. Comm. 13: 647–648.Google Scholar
  40. Gillman,I.G., Clark,T.N., and Manderville R.A., 1999, Oxidation ofochratoxin A by a Fe-porphyrin system: model for enzymatic activation and DNA cleavage, Chem. Res. Toxicol. 12: 1066–1076.CrossRefGoogle Scholar
  41. Graham, J. H., Timmer, L.W., and Young R.H., 1983, Necrosis of major roots in relation to citrus blight, Plant Disease 67: 1273–1276.CrossRefGoogle Scholar
  42. Halliwell, B., and Gutteridge, J.M.C., 1986, Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts, Arch. Biochem. Biophys. 246: 501–514.PubMedCrossRefGoogle Scholar
  43. Hanna, P., 1999, Lethal toxin actions and their consequences, J.Appl. Microbiol. 87: 285–287.PubMedCrossRefGoogle Scholar
  44. Härtel, H., Haseloff, R.F., Ebert, B., and Rank, B., 1992, Free radical formation in chloroplasts–methyl viologen action, J. Photochem. Photobiol. B: Biol. 12: 375–387.CrossRefGoogle Scholar
  45. Hartman, P.E., Suzuki, C.K., and Stack, M.E., 1989, Photodynamic production of superoxide in vitro by altertoxins in the presence of reducing agents, Appl. and Environ. Microbiology 55: 7–10.Google Scholar
  46. Hasinoff, B.B., Rahimtula, A.D., and Omar, R.F., 1990, NADPH-Cytochrome P-450 reductase promoted hydroxyl radical production by the iron(III)-ochratoxin A complex, Biochim.Biophys.Acta 1036: 78–81.PubMedCrossRefGoogle Scholar
  47. Heiser, I., Muhr, A., and Elstner, E.F., 1998a, Production of OH-radical-type oxidant by lucigenin, Z. Naturforsch. 53c: 9–14.Google Scholar
  48. Heiser, I., Oßwald, W., Baker, R., Nemec, S., and Elstner, E.F., 1998b, Activation of Fusarium naphthazarin toxins and other p-quinones by reduced thioctic acid, J. Plant Physiol. 153: 276–280.CrossRefGoogle Scholar
  49. Heiser, 1., Oßwald, W., and Elstner, E.F., 1998c, The formation of reactive oxygen species by fungal and bacterial phytotoxins, Plant Physiol. Biochem. 36: 703–713.CrossRefGoogle Scholar
  50. Heiser, I., Fromm, J., Giefing, M., Koehl, J., Jung, T., and Oßwald, W., 1999, Investigations on the action of Phytophthora quercina, P. citricola and P. gonapodyides toxins on tobacco plants, Plant Physiol. Biochem. 37: 73–81.CrossRefGoogle Scholar
  51. H ippeli, S., and Elstner, E.F., 1999, Transition metal ion-catalyzed oxygen activation during pathogenic processes, FEBS Letters 443: 1–7.PubMedCrossRefGoogle Scholar
  52. Hlavica, P., 1984, On the function of cytochrome P-450-dependent oxygenase system, Arch. Biochem. Biophys. 228: 600–608.PubMedCrossRefGoogle Scholar
  53. Hodgson, R.A.J., and Raison, J.K., 1991, Lipid-peroxidation and superoxide-dismutase activity in relation to photoinhibition induced by chilling in moderate light, Planta 185: 215–219.CrossRefGoogle Scholar
  54. Jarabak, R., and Jarabak, J., 1995, Effect of ascorbate on the DT-diaphorase mediated redox cycling of 2-methyl-1, 4-naphthoquinone, Arch. Biochem. Biophys. 318: 418–423.PubMedCrossRefGoogle Scholar
  55. Kaur, T., Singh, S., Dhawan, V., and Ganguly, N.K., 1998, Shigelladysenteriae type 1 toxin induced lipid peroxidation in enterocytes isolated from rabbit ileum, Mol.Chem.Biochem. 178: 169–179.Google Scholar
  56. Kern, H., 1978, The naphthazarins of Fusarium, Annu. Phytopathol. 10: 327–345.Google Scholar
  57. Kindas-Mugge, I., Pohl, W.R., Zavadova, E., Kohn, H.D., Fitzal, S., Kummer, F., and Micksche, M., 1996, Alveolar macrophages on patients with adult respiratory distress syndrome express high levels of heat shock protein 72 mRNA, Shock 5: 184–189.PubMedCrossRefGoogle Scholar
  58. King, A.J., Sudartam, S., Cendoroglo, M., Acheson, D.W., and Keusch, G.T., 1999, Shigatoxin induces superoxide production in polymorphonuclear cells with subsequent impairment of phagocytosis and responsiveness to phorbol esters, J. Infec. Dis. 179: 503–507.CrossRefGoogle Scholar
  59. Kombrink, J., and Somssich, I.E., 1995, Defense responses of plants to pathogens, Advances in Botanical Research 21: 34.CrossRefGoogle Scholar
  60. Le Berre, J., Panabières, F., Ponchet, M., Denoroy, L., Bonnet, P., Marais, A., and Ricci, P., 1994, Occurrence of multiple forms of elicitins in Phytophthora cryptogea, Plant Physiol. Biochem. 32: 251–258.Google Scholar
  61. Lüthje, S., Döring, O., Heuer, S., Lüthen, H., and Böttger, M., 1997, Oxidoreductases in plant plasma membranes, Biochim. Biophys. Acta 1331: 81–102.Google Scholar
  62. Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model, Cell 96: 47–56.PubMedCrossRefGoogle Scholar
  63. Marsho, T.V., Behrens, P.W., and Radmer, R.J., 1979, Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach, Plant Physiol. 64: 656–659.PubMedCrossRefGoogle Scholar
  64. Masuda, T., Ito, J., Akuzawa, S., Ishii, K., Takagi, H., and Ueno, Y., 1992, Hepatic accumulation and hepatotoxicity of luteoskyrin in mice, Toxicol. Lett. 61: 9–20.PubMedCrossRefGoogle Scholar
  65. Matsunage, T., Nakajima, T., Sonoda, M., Kawai, S., Kobayashi, J., Inoue, I., Satomi, A., Katayama, S., Hara, A., Hokari, S., Honda, T., and Komoda, T., 1999, Reactive oxygen species as a risk factor in verotoxin-l-exposed rats, Biochem. Biophys. Res. Comm. 260: 813–819.CrossRefGoogle Scholar
  66. Mavandad, M., Edwards, R., Liang, X., Lamb, C.J., and Dixon, R.A., 1990, Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family, Plant Physiol. 94: 671–680.PubMedCrossRefGoogle Scholar
  67. Medentsev, A.G., Baskunov, B.P., and Akimenko, V.K., 1988, Formation of naphthoquinone pigments by the fungus Fusarium decemcellulare and their influence on the oxidative metabolism of the producer, Biokhimiya 53: 353–363.Google Scholar
  68. Milat, M., Ducruet, J., Ricci, P., Marty, F., and Blein, J., 1991, Physiological and structural changes in tobacco leaves treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, Phytopathology 81: 1364 1368.Google Scholar
  69. Mikes, V., Milat, M., Ponchet, M., Ricci, P., and Blein, J., 1997, The fungal elicitor cryptogein is a sterol carrier protein, FEBS Letters 416: 190–192.PubMedCrossRefGoogle Scholar
  70. Muller, G., Kieslstein, P., Rosner, H., Berndt, A., Heller, M., and Kohler, H., 1999, Studies of the influence of ochratoxin A on immune defence reactions in weaners, Mycoses 42: 495–505.PubMedCrossRefGoogle Scholar
  71. Nebert, D.W., 1978, Genetic difference in microsomal electron transport: the Ah-locus, Methods Enzymol. 52: 226–232.PubMedCrossRefGoogle Scholar
  72. Nemec, S., Baker, R.A., and Tatum, J.H., 1988, Toxicity of dihydrofusarubin and isomarticin from Fusarium solani to citrus seedlings, Soil Biol. Biochem. 20: 493–499.CrossRefGoogle Scholar
  73. Nemec, S., Jabaji-Hare, S., and Charest, P.M., 1991, ELISA and immunocytochemical detection of Fusarium solaniproduced naphthazarin toxins in citrus trees in Florida, Phytopathology 81: 1497–1503.CrossRefGoogle Scholar
  74. Nürnberger, T., Nennstiel, D., Jabs, T., Sachs, W.R., Hahlbrock, R., and Scheel, D., 1994, High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses, Cell 78: 449–460.PubMedCrossRefGoogle Scholar
  75. Omar, R.F., Hasinoff, B.B., Mejilla, F., and Rahimtula, A.D., 1990, Mechanism of ochratoxin A stimulated lipid peroxidation, Biochem. Pharmacol. 40: 1183–1191.PubMedCrossRefGoogle Scholar
  76. Omar, R.F., Gelboin, H.V., and Rahimtula, A.D., 1996, Effect of cytochrom P450 induction on the metabolism and toxicity of ochratoxin A., Biochem. Pharmacol. 51: 207–216.PubMedCrossRefGoogle Scholar
  77. Oßwald, W., 1995, Die Wirt-Parasit-Beziehungen — Bakterien und Pilze als Parasiten, in: Schadwirkungen auf Pflanzen, B. Hock and E.F. Elstner, eds., Spektrum akademischer Verlag, Heidelberg, Berlin.Google Scholar
  78. Oßwald, W.F., and Elstner, E.F., 1986, Mechanismen der pathologischen Pigmentbleichung bei Pflanzen, Ber. Deutsch. Bot. Ges. 99: 341–365.Google Scholar
  79. Oubrahim, H., Richard, J.M., and Cantin-Esnauld, D., 1998, Peroxidase-mediated oxidation, a possible pathway for activation of the fungal nephrotoxin orellanine and related compounds. ESR and spin trapping studies, Free Radic. Res. 28: 497–505.PubMedCrossRefGoogle Scholar
  80. Panabières, F., Ponchet, M., Allasia, V., Cardin, L., and Ricci, P., 1997, Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical from Phytophthora spp., Mycol. Res. 101: 1459–1468.CrossRefGoogle Scholar
  81. Parisot, D., Devys, M., and Barbier, M., 1990, Naphthoquinone pigments related to fusarium from the fungus Fusarium solani (Mart.) Sacc. Microbios 64: 31–47.PubMedGoogle Scholar
  82. Pernollet, J., Sallantin, M., Sallé-Tourne, M., and Huet, J., 1993, Elicitin isoforms from seven Phytophthora species: comparison of their physio-chemical properties and toxicity to tobacco and other plant species, Physiol. and Mol. Plant Pathol. 42: 53–67.CrossRefGoogle Scholar
  83. Powis, G., 1989, Free radical formation by antitumor quinones, Free Rad. Biol. Med. 6: 63–67.PubMedCrossRefGoogle Scholar
  84. Rahimtula, A.D., Bereziat, J.C., Bussacchini-Griot, V., and Bartsch, H., 1988, Lipid peroxidation as a possible cause of ochratoxin A toxicity, Biochem. Pharmacol. 37: 4469–4477.PubMedCrossRefGoogle Scholar
  85. Ribeiro, S.M., Chagas, G.M., Campello, A.P., and Kluppel, M.L., 1997, Mechanism ofcitrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species, Cell Biochem. Funct. 1: 203–209.CrossRefGoogle Scholar
  86. Ricci, P., Bonnet, P., Huet, J., Sallantin, M., Beavais-Cante, F., Brunteau, M., Billard, V., Michel, G., and Pemollet, J., 1989, Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco, Eur. J. Biochem. 183: 555–563.PubMedCrossRefGoogle Scholar
  87. Rohnert, U., Heiser, I., Nemec, S., Baker, R., Oßwald, W., and Elstner, E.F., 1998, Diaphorase-mediated oxygen activation and uncoupling ofmitochondrial electron transport by naphthazarin toxins produced by Fusarium solani, J Plant Physiol. 15: 684–692.CrossRefGoogle Scholar
  88. Rusterucci, C., Stallaert, V., Milat, M., Pugin, A., Ricci, P., and Blein, J., 1996, Relationship between active oxygen species, lipid peroxidation, necrosis and phytoalexin production induced by elicitins in Nicotiana, Plant Physiol. 11: 885–891.Google Scholar
  89. Schäfer, W., 1994, Molecular mechanisms of fungal pathogenicity to plant, Ann. Rev. Phytopathol. 3: 461–477.CrossRefGoogle Scholar
  90. Serioukova, I.F., and Peterson, J.A., 1995, NADPH-P-450 reductase: Structural and functional comparisons of the eukaryotic and prokaryotic isoforms, Biochimie 77: 562–572.CrossRefGoogle Scholar
  91. Shin, S., Kim, Y.B., and Hur, G.H., 1999, Involvement ofphospholipase A2 activation in anthrax lethal toxin-induced cytotoxicity, Cell Biol. Toxicol. 15: 19–20.PubMedCrossRefGoogle Scholar
  92. Skinnider, L., Stoessl, A., and Wang, J., 1989, Increased frequency of sister-chromatid exchange induced by dothistromin in CHO cells and human lymphocytes, Mutat. Res. 22: 167–170.Google Scholar
  93. Stoessl, A., 1984, Dothistromin as a metabolite of Cercospora arachidicola, Mycopathologia 86: 165–168.PubMedCrossRefGoogle Scholar
  94. Synder, W. C., Georgopoulos, S.G., Webster, R.K., and Smith, S.N., 1975, Sexuality and genetic behavior in the fungus Hypomyces (Fusarium) solani f.sp. cucurbitae, Hilgardia 4: 161–185.Google Scholar
  95. Tavernier, E., Wendehenne, D., Blein, J.P., and Pugin, A., 1995, Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells, Plant Physiol. 10: 1025–1031.Google Scholar
  96. Terc-Laforgue, T., Huet, J., and Pernollet, J., 1992, Biosynthesis and secretion of cryptogein, a protein elicitor secreted by Phytophthora cryptogea, Plant Physiol. 98: 936–941.CrossRefGoogle Scholar
  97. Trebst, A., Donner, W., and Draber, W., 1984, Structure activity correlation of herbicides affecting plastoquinone reduction by photosystem II: electron density distribution in inhibitors and plastoquinone species, Z. Naturforsch. 39: 405–411.Google Scholar
  98. Viard, M.-P., Martin, F., Pugin, A., Ricci, P., and Blein, J.-P., 1994, Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein Plant Physiol. 10: 145–149.Google Scholar
  99. Yoder, O.C., 1980, Toxins in pathogenesis, Ann. Rev. Phytopathol. 18: 103–129.CrossRefGoogle Scholar
  100. Youngman, R.J., and Elstner, E.F., 1981, Oxygen species in paraquat toxicity: the crypto-OH radicals, FEBS-Lett. 129: 265–268.PubMedCrossRefGoogle Scholar
  101. Youngman, R.J., and Elstner, E.F., 1984, Photodynamic and reductive mechanisms of oxygen activation by the fungal phytotoxins, cercosporin and dothistromin, in: Oxygen Radicals in Chemistry and Biology, W. Bors and M. Saran, eds., Walter de Gruyter and Co., Berlin, New York.Google Scholar
  102. Youngman, R.J., Schieberle, H., Schnabel, H., Grosch, W., and Elstner, E.F., 1983, The photodynamic generation of singlet molecular oxygen by the fungal phytotoxin, cercosporin, Photobiochem. Photobiol. 6: 109–119.Google Scholar
  103. Yu, L., 1995, Elicitins from Phytophthora and basic resistance in tobacco, Proc.Natl.Acad Sci. USA 92: 4088–4094.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ingrid Heiser
    • 1
  • Julia Koehl
    • 1
  • Erich F. Elstner
    • 1
  1. 1.Institute of PhytopathologyTechnical University of MunichFreising/WeihenstephanGermany

Personalised recommendations