The Aflatoxins: Evolution, Function and Prospects for Control

  • Deidre A. Carter
  • Nai Tran-Dinh
  • Michael Stat
  • Swapna Kumar
  • Tien Bui
  • John I. Pitt


Aflatoxins were discovered in 1960, following the deaths of 100,000 turkeys in the United Kingdom, large numbers of ducklings in Kenya, and, almost simultaneously, the finding of widespread hepatoma in hatchery reared trout in California. The turkey deaths was traced to toxic feed from Brazil, and led to the discovery that the common mould Aspergillus flavus was a producer of a potent set of hepatotoxins, which became known as aflatoxins. Subsequent work showed that four aflatoxins occurred naturally, named aflatoxins B 1, B2, GI and G2, based on the compounds’ blue or green fluorescence under ultra violet light and their relative position on thin layer chromatography plates. The acute toxicity of aflatoxins to all domestic animal species was established soon after their discovery. Their potential carcinogenicity to animals and, by implication, humans, became evident a few years later (Stoloff, 1977). Indeed aflatoxin B1 is regarded as the most potent known liver carcinogen.


Aflatoxin Production Vegetative Compatibility Cyclopiazonic Acid Peanut Plant Aspergillus Parasiticus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar, F., Hussain, S.P., and Cerutti, P., 1993, Aflatoxin B 1 induces the transversion of G–T in codon 249 of the p53 tumor suppressor gene in human hepatocytes, Proc. Natl. Acad. Sci. 90: 8586–8590.PubMedCrossRefGoogle Scholar
  2. Angle, J.S., 1986, Aflatoxin decomposition in various soils, J. Environ. Sci. Health 21: 277–288.CrossRefGoogle Scholar
  3. Ashley, M.V., and Dow, B.D., 1994, The use of microsatellite analysis in population biology: Background, methods and potential applications, in: Molecular Ecology and Evolution Approaches and Applications, B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds., Birkhäuser Verlag, Basel, pp. 185–201.Google Scholar
  4. Ashworth, L.J.J., Schroeder, H.W., and Langley, B.C., 1965, Aflatoxins: environmental factors governing occurrence in Spanish peanuts, Science 148: 1228–1229.PubMedCrossRefGoogle Scholar
  5. Bayman, P., and Cotty, P.J., 1991, Vegetative compatibility and genetic diversity in the Aspergillus flavus population of a single field, Can. J. Bot. 69: 1707–1711.CrossRefGoogle Scholar
  6. Bayman, P. and Cotty, P.J., 1993, Genetic diversity in Aspergillusflavus: association with aflatoxin production and morphology, Can. J. Bot. 71: 23–31.CrossRefGoogle Scholar
  7. Bennett, J.W., 1982, Genetics of mycotoxin production with emphasis, on aflatoxins, in: Overproduction ofMicrobial Products, V. Krumphanzl, B. Sikyta and Z. Vanek, eds., Academic Press, London, pp. 549–561.Google Scholar
  8. Bennett, J.W., and Horowitz, P.C., 1979, Production of sclerotia by aflatoxigenic and nonaflatoxigenic strains of Aspergillus flavus and A. parasiticus, Mycologia 71: 415–422.PubMedCrossRefGoogle Scholar
  9. Bilgrami, K.S., and Sinha, K.K., 1992, Aflatoxins: their biological effects and ecological significance, in: Handbook of Applied Mycology, Vol. 5. Mycotoxins in Ecological Systems, D. Bhatnagar, E. Lillehoj and D. K. Arora, eds., Marcel Dekker, Basel, pp. 59–86.Google Scholar
  10. Brown, M.P., Brown-Jenco, C.S. and Payne, G.A., 1999, Genetic and molecular analysis of aflatoxin biosynthesis, Fung. Genet. Biol. 26: 81–98.CrossRefGoogle Scholar
  11. Brown, R.L., Cotty, P.J. and Cleveland, T.E., 1991, Reduction in aflatoxin content of maize by atoxigenic strains of Aspergillus flavus, Journal of Food Prot. 54: 623–626.Google Scholar
  12. Bui, T., Carter, D.A., and Pitt, J.I., 1999, Investigation of a “cryptic species” within Aspergillus flavus using molecular techniques, in: IXth International Congress of Mycology, International Union of Microbiological Societies, Sydney, Australia.Google Scholar
  13. Burmeister, H.R., and Hesseltine, C.W., 1966, Survey of the sensitivity of microorganisms to aflatoxins, Appl. Microbial. 14: 403–404.Google Scholar
  14. Burt, A.C., Carter, D.A., Koenig, G.L., White, T.J., and Taylor, J.W., 1996, Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis, Proc. Natl. Acad. Sci. USA 93: 770–773.PubMedCrossRefGoogle Scholar
  15. Campbell, T.C., Chen, J., Liu, C., Li, J., and Parpia, B., 1990, Nonassociation ofaflatoxin with primary liver cancer in a cross-sectional ecological survey in the People’s Republic of China, Cancer Res. 50: 6882–6893.PubMedGoogle Scholar
  16. Carter, D.A., and Pitt, J.I., 1999, Genetic, morphological and biochemical investigations of a “cryptic species” within Aspergillus flavus (Abstr.), Fung. Genet. Newslett. 46-Supplement: 99.Google Scholar
  17. Carter, D.A., Taylor, J.W., Burt, A., Koenig, G.L., and White, T.J., 2001, Amplified Single Nucleotide Polymorphisms and a (GA)n microsatellite marker reveal genetic differentiation between populations of Histoplasma capsulatum from the Americas, Fung. Genet. Biol. 34 (1): 37–48.CrossRefGoogle Scholar
  18. Chang, P.K., Bhatnager, D., Cleveland, T.E., and Bennett, J.W., 1995a, Sequence variability in homologs of the aflatoxin pathway gene aJIR distinguishes species in Aspergillus sectionflavi, Appl. Environ. Microbial. 61: 40–43.Google Scholar
  19. Chang, P.K., Ehrlich Kenneth, C., Yu, J., Bhatnagar, D., and Cleveland Thomas, E., 1995b, Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition ofaflatoxin biosynthesis, Appl. Environ. Microbial 61: 2372–2377.Google Scholar
  20. Cole, R.J., and Cox, R.H., 1981, Handbook ofToxic Fungal Metabolites, Academic Press, New York.Google Scholar
  21. Cony, P.J., 1988, Aflatoxin and sclerotial production by Aspergillus flavus: influence of pH, Phytopathol. 78: 1250–1253.CrossRefGoogle Scholar
  22. Cotty, P.J., 1989, Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton, Phytopathol. 79: 808–814.CrossRefGoogle Scholar
  23. Cony, P.J., 1990, Effect of atoxigenic strains ofAspergillusJlavus on aflatoxin contamination of developing cottonseed, Pl. Dis. 74: 233–235.CrossRefGoogle Scholar
  24. Cotty, P.J., Bayman, P., Egel, D.S., and Elias, K.S., 1994, Agriculture, aflatoxins and Aspergillus, in: The Genus Aspergillus from Taxonomy and Genetics to Industrial Application, K. A. Powell, A. Renwick, and J. F. Peberdy, eds., Plenum Press, New York, pp. 1–27.Google Scholar
  25. Darner, J.W., Cole, R.J., and Blankenship, P.D., 1998, Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts, Biol. Contr. 12: 171–176.CrossRefGoogle Scholar
  26. Dorner, J.W., Cole, R.J., Sanders, T.H., and Blankenship, B.D., 1989, Interrelationships ofkemel water activity, soil temperature, maturity and phytoalexin production in pre-harvest aflatoxin contaminated drought stressed plants, Mycopathologia 105: 117–128.PubMedCrossRefGoogle Scholar
  27. Drummond, J., and Pinnock, D.E., 1990, Aflatoxin production by entomopathogenic isolates of Aspergillus parasiticus and Aspergillus flavus, J. Inver. Pathol. 55: 332–336.CrossRefGoogle Scholar
  28. Dutton, M.F., 1988, Enzymes and aflatoxin biosynthesis, Microbial. Rev. 52: 274–295.Google Scholar
  29. Dyer, S.K., and McCammon, S., 1994, Detection of toxigenic isolates of Aspergillus flavus and related species on coconut cream agar, J. Appl. Bacterial. 76: 75–78.CrossRefGoogle Scholar
  30. Ehrlich, K., 1987, Effect on aflatoxin production of competition between wild-type and mutant strains of Aspergillus parasiticus, Mycopathologia 97: 93–96.PubMedCrossRefGoogle Scholar
  31. Ehrlich, K.C., Cary, J.W., and Montalbano, B.G., 1999a, Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR, Biochim. Biophys. Acta 1444: 412–417.PubMedCrossRefGoogle Scholar
  32. Ehrlich, K.C., Ciegler, A., Klich, M., and Lee, L., 1985, Fungal competition and mycotoxin production on corn, Experientia 41: 691–693.CrossRefGoogle Scholar
  33. Ehrlich, K.C., Montalbano, B.G., and Cary, J.W., 1999b, Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus, Gene 230: 249–257.PubMedCrossRefGoogle Scholar
  34. Fisher, M.C., Koenig, G., White, T.J., and Taylor, J.W., 2000, A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis, Mol. Biol. Evol. 17: 1164–1174.PubMedCrossRefGoogle Scholar
  35. Foutz, K.R., Woloshuk, C.P., and Payne, G.A., 1995, Cloning and assignment of linkage group loci to a karyotypic map of the filamentous fungus, Aspergillusflavus, Mycologia 87: 787–794.CrossRefGoogle Scholar
  36. Geiser, D.M., Dorner, J.W., Horn, B.W., and Taylor, J.W., 2000, The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae, Fung. Genet. Biol. 31: 169–179.CrossRefGoogle Scholar
  37. Geiser, D.M., Pitt, J.I., and Taylor, J.W., 1998, Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus, Proc. Natl.Acad Sci. USA 95: 388–393.PubMedCrossRefGoogle Scholar
  38. Groppe, K., Sanders, I., Wiernken, A., and Boller, T., 1995, A microsatellite marker for studying the ecology and diversity of fungal endophytes (Epochloë spp.) in grasses, Appl. Environ. Microbiol. 61: 3943–3949.PubMedGoogle Scholar
  39. Hesseltine, C.W., Shotwell, O.L., Smith, M., Ellis, J.J., Vandegraft, E., and Shannon, G., 1968, Production of various aflatoxins by strains of the Aspergillus flavus series, in: The First US-Japan Conference on Toxic Microorganisms, Honolulu, Hawaii, pp. 202–210.Google Scholar
  40. Horn, B.W., Dorner, J.W., Greene, R.L., Blankenship, P.D. and Cole, R.J., 1994, Effect ofAspergillus parasiticus soil inoculum on invasion of peanut seeds, Mycopathologia 125: 179–191.PubMedCrossRefGoogle Scholar
  41. Horn, B.W., and Greene, R.L., 1995, Vegetative compatibility within populations of Aspergillus flavus, A. parasiticus, and A. tamarii from a peanut field, Mycologia 87: 324–332.CrossRefGoogle Scholar
  42. ICMSF (International Commission on Microbiological Specifications for Foods), 1996, Toxigenic Fungi: Aspergillus in Microorganisms in Foods, 5. Characteristics of Food Pathogens, Blackie Academic and Professional, London, pp. 347–381.Google Scholar
  43. Ito, Y., Peterson, S.W., Wicklow, D.T., and Goto, T., 2001, Aspergillus pseudotamarii, a new aflatoxin producing species, Mycol. Res. 105: 233–239.CrossRefGoogle Scholar
  44. Johnston, M., 1987, A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae, Microbial Rev 51: 458–476.Google Scholar
  45. Kale, S.P., Cary, J.W., Bhatnagar, D., and Bennett, J.W., 1996, Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus, Appl. Environ. Microbial 62: 3399–3404Google Scholar
  46. Keller, N.P., Cleveland, T.E., and Bhatnagar, D., 1992, Variable electrophoretic karyotypes of members of Aspergillus section Flavi, Curr. Genet. 21: 371–375.CrossRefGoogle Scholar
  47. Klich, M.A., and Cleveland, T.E., 2000, Aspergillus systematics and the molecular genetics of mycotoxin biosynthesis, in: Integration of Modern Taxonomic Methods for Penicillium and Aspergillus, Third International Workshop on Penicillium and Aspergillus, Baarn, The Netherlands, R.A. Samson and J.I. Pitt, eds., Harwood Academic Publishers, Singapore, pp. 425–434.Google Scholar
  48. Klich, M.A., Montalbano, B., and Ehrlich, K., 1997, Northern analysis of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus sojae, Appl. Microbio. Biotechnol. 47: 246–249.Google Scholar
  49. Klich, M.A., and Pitt, J.I., 1988, Differentiation of Aspergillus flavus from A. parasiticus and other closely related species, Trans. Brit. Mycol. Soc. 91: 99–108.CrossRefGoogle Scholar
  50. Kumar, S., 1998, Analysis of the molecular basis of nontoxigencity in Aspergillus flavus and Aspergillus parasiticus., MSc thesis, University of Sydney.Google Scholar
  51. Kurtzman, C.P., Horn, B.W., and Hesseltine, C.W., 1987, Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii, Antonic van Leeuwenhock 53: 147–158.Google Scholar
  52. Kurtzman, C.P., Smiley, M.J., Robnett, C.J., and Wicklow, D.T., 1986, DNA relatedness among wild and domesticated species in the Aspergillus flavus group, Mycologia 78: 955–959.CrossRefGoogle Scholar
  53. Lee, L.S., Wall, J.H., Cony, P.J., and Bayman, P., 1990, Integration ofELISA with conventional chromatographic procedures for quantitation of aflatoxin in individual cotton bolls, seeds and seed sections, J Assoc. Off. Anal. Chem. 73: 581–584.PubMedGoogle Scholar
  54. Ma, J. and Ptashne, M., 1987, Deletion analysis of GAL4 defines two transcriptional activation segments, Cell 48: 847–853.PubMedCrossRefGoogle Scholar
  55. Maynard Smith, J., Smith, N.H., O’Rourke, M., and Spratt, B.G., 1993, How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90: 4384–4388.PubMedCrossRefGoogle Scholar
  56. Meyers, D.M., O’Brian, G., Du, W.L., Bhatnagar, D. and Payne, G.A., 1998, Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin, Appl. Environ. Microbiol64: 3713–3717.Google Scholar
  57. Ohtomo, T., Murakoshi, S., Sugiyama, J., and Kurata, H., 1975, Detection of aflatoxin Bi in silkworm larvae attacked by an Aspergillus flavus isolate from a sericultural farm, Appl. Microbiol. 30: 1034–1035.PubMedGoogle Scholar
  58. Payne, G.A., Nystrom, G.J., Bhatnagar, D., Cleveland, T.E., and Woloshuk, C.P., 1993, Cloning of the afl-2 gene invloved in aflatoxin biosynthesis from Aspergillusflavus, Appl. Environ. Microbiol 59: 156–162.PubMedGoogle Scholar
  59. Peers, F.G., and Linsell, C.A., 1973, Dietary aflatoxins and liver cancer: a population based study in Kenya, Br. J. Cancer 27: 473–1484.PubMedCrossRefGoogle Scholar
  60. Peterson, S., 2000, Phylogenetic relationships in Aspergillus based upon rDNA sequence analysis, in: Integration of Molecular and Morphological Approaches to Aspergillus and Penicillium Taxonomy, Third International Workshop on Penicillium and Aspergillus, Baarn, The Netherlands, R. A. Samson and J. I. Pitt, eds., Harwood Academic Publishers, Singapore, pp. 323–355.Google Scholar
  61. Peterson, S.W., Horn, B.W., Ito, Y., and Goto, T., 2000, Genetic variation and aflatoxin production in Aspergillus tamarii and A. caelatus, in: Integration of Molecular and Morphological Approaches to Aspergillus and Penicillium Taxonomy, Third International Workshop on Penicillium and Aspergillus, Baarn, The Netherlands, R. A. Samson and J. I. Pitt, eds., Harwood Academic Publishers, Singapore, pp. 447–458.Google Scholar
  62. Pitt, J.I., 1993, Corrections to species names in physiological studies on Aspergillus flavus and Aspergillus parasiticus, J. Food Prot. 56: 265–269.Google Scholar
  63. Pitt, J.I., Dyer, S.K., and McCammon, S., 1991, Systemic invasion of developing peanut plants by Aspergillus flavus, Lett. Appl. Microbiol. 13: 16–20.CrossRefGoogle Scholar
  64. Pitt, J.I., and Hocking, A.D., 1996, Current knowledge of fungi and mycotoxins associated with food commodities in Southeast Asia, in: Mycotoxin Contamination in Grains, E. Highley and G. I. Johnson, eds., ACIARGoogle Scholar
  65. Technical Reports, Canberra: Australian Centre for International Agricultural Research, pp. 5–10.Google Scholar
  66. Pitt, J.I., and Hocking, A.D., 1997, Fungi and Food Spoilage, 2nd ed, Blackie Academic and Professional, London Pitt, J.I., and Miscamble, B.F., 1995, Water relations ofAspergillusflavus and closely related species, J. Food Prot. 58: 86–90.Google Scholar
  67. Pitt, J.I., Samson, R.A., and Frisvad, J.C., 2000, List of accepted species and their synonyms in the family Trichocomaceae, in: Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification, R. A. Samson and J. I. Pitt, eds., Harwood Academic Publishers, London, pp. 9–49.Google Scholar
  68. Stoloff, L., 1977, Aflatoxins — an overview, in: Mycotoxin in Human and Animal Health J. V. Rodricks, C. W. Hesseltine and M. A. Mehlman, eds., Pathotox Publishers, Park Forest South, Illinois, pp. 7–28.Google Scholar
  69. Takahashi, T., Onoue, Y., and Mori, M., 1986, Contamination by moulds and inhibitory effect of hay cube on aflatoxin production by Aspergillusflavus, Proc. Jpn. Assoc. Mycotoxicol. 23: 15–22.Google Scholar
  70. Tibayrenc, M., Kjellberg, F., Arnaud, J., Oury, B., Breniere, S.F., Darde, M.L., and Ayala, F.J., 1991, Are eukaryotic microorganisms clonal or sexual? A population genetics vantage, Proc. Natl. Acad. Sci. USA 88: 5129–5133PubMedCrossRefGoogle Scholar
  71. Trail, F., Mahanti, N., and Linz, J., 1995a, Molecular biology of aflatoxin biosynthesis, Microbiol. 141: 755–765CrossRefGoogle Scholar
  72. Trail, F., Mahanti, N., Rarick, M., Mehigh, R., Liang, S.H., Zhou, R., and Linz, J.E., 1995b, Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway, Appl. Environ. Microbiol 61: 2665–2673.PubMedGoogle Scholar
  73. Tran-Dinh, N., and Carter, D.A. 2000 Characterization ofMicrosatellite loci in the aflatoxigenic fungi for Aspergillus litmus and A. parasiticus, Mol. Ecol. 9: 2170–2172.PubMedCrossRefGoogle Scholar
  74. Tran-Dinh, N., Kumar, S., Pitt, J.I., and Carter, D.A., 2000b, Analysis of the molecular and evolutionary basis of toxigenicity and non-toxigenicity in Aspergillus flavus and A. parasiticus, in: Integration of Modern Taxonomic Methods for Penicillium and Aspergillus, Third International Workshop on Penicillium and Aspergillus, Baam, The Netherlands, R. A. Samson and J. I. Pitt, eds., Harwood Academic Publishers, Singapore, pp. 435–445.Google Scholar
  75. Tran-Dinh, N., Pitt, J.I., and Carter, D.A., 1999, Molecular genotype analysis of natural toxigenic and nontoxigenic isolates of Aspergillusflavus and A. parasiticus, Mycol. Res. 103: 1485–1490.CrossRefGoogle Scholar
  76. Walton, J.D., 2000, Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: An hypothesis, Fung. Genet. BioL 30: 167–171.CrossRefGoogle Scholar
  77. Watson, A.J., Fuller, L.J., Jeenes, D.J., and Archer, D.B., 1998, Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae, Appl. Environ. Microbiol. 65: 307–310Google Scholar
  78. Wicklow, D.T., 1984, Adaptation in wild and domesticated yellow-green Aspergilli, in: Toxigenic Fungi–Their Toxins and Health Hazard, H. Kurata and Y. Ueno, eds., Elsevier, Amsterdam, pp., 78–86.Google Scholar
  79. Wicklow, D.T., and L., S.O., 1983, Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus, Can. J. Microbiol. 29: 1–5.PubMedCrossRefGoogle Scholar
  80. Wild, C.P., Jansen, L.A.M., Cova, L., and Montesano, R., 1993, Molecular dosimetty of aflatoxin exposure: contribution to understanding the multifactorial etiopathogenisis of primary hepatocellular carcinoma with particular reference to hepatitis B virus, Environ. Health Persp. 99: 115–122.CrossRefGoogle Scholar
  81. Willetts, H.J., and Bullock, S., 1992, Developmental biology of sclerotia, Mycol. Res. 96: 801–816.CrossRefGoogle Scholar
  82. Woloshuk, C.P., Foutz, K.R., Brewer, J.F., Bhatnagar, D., Cleveland, T.E., and Payne, G.A., 1994, Molecular characterization of afiR, a regulatory locus for aflatoxin biosynthesis, Appl. Environ. Microbiol. 60: 2408–2414.PubMedGoogle Scholar
  83. Yu, J.H., Butchko, R.A.E., Fernandes, M., Keller, N.P., Leonard, T.J., and Adams, T.H., 1996, Conservation of structure and function of the aflatoxin regulatory gene afiR from Aspergillus nidulans and A. flavus, Curr. Genet. 29: 549–555.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Deidre A. Carter
    • 1
  • Nai Tran-Dinh
    • 1
  • Michael Stat
    • 1
  • Swapna Kumar
    • 1
  • Tien Bui
    • 1
  • John I. Pitt
    • 2
  1. 1.Department of MicrobiologyUniversity of SydneyAustralia
  2. 2.Food Science AustraliaNorth RydeAustralia

Personalised recommendations