Skip to main content

Abstract

Inhibition of ceramide synthase has recently been identified (Abbas et al., 1993c, d; Abbas and Shier, 1997; Abbas et al., 1998c; Vesonder et al., 1992) as the mechanism of action of a small group of phytotoxins isolated from various fungi (Figure 1). This group of compounds causes dramatic effects in both animal and plant systems (Abbas et al., 1998a; Abbas and Boyette, 1992; Abbas et al., 1999; 1996; 1993b; 1995b, c, d;1991; Kellerman et al.,1990; Marasas et al., 1988; Shier et al., 1997; Shier and Abbas, 1999), and the evidence supports inhibition of ceramide synthase as the toxic mechanism (Abbas et al., 1995a; 1997b; 1994; Abbas and Shier, i 998; Norred,1993; Riley et al., 1994; 1996). Ceramide synthase is a key enzyme in the biosynthesis (Figure 2) of sphingolipid components of cell membranes (Figure 3) (Riley et al., 1993; Wang et al.,1991;1992; Lynch, 2000; Merrill, 1993b; Norred, 1993; Shier and Shier, 2000). Ceramide synthase inhibitors can be conveniently divided into two groups (Figure 1). The first group includes the AAL-toxins (Bottini and Gilchrist, 1981; Bottini et al., 1981; Caldas et al., 1994) and the fumonisins (Bezuidenhout et al., 1988; Gelderblom et al., 1988), both of which are structural analogs of the ceramide synthase substrate sphingosine. The second group consists of australifungin and its derivatives (Manadala et al., 1995), which are not apparent substrate analogs of ceramide synthase. These toxins were initially studied as inhibitors of mammalian ceramide synthase, but more recently studies have been extended to plant ceramide synthases. Research has been conducted to develop ceramide synthase as a target for new bioherbicides. However, fumonisins in food and feed have been shown to be toxic to animals and humans. The FDA has set guidelines for fumonisin levels in corn and corn products between 2 to 4 ppm. These mycotoxins are a serious public health issue (NTP, 1999). Thus, inhibitors of ceramide synthase have assumed importance in food safety, as well as in understanding the chemical ecology between plants and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, H.K., and Boyette, C.D., 1992, Phytotoxicity of fumonisin B1 on weed and crop species, Weed Technology 6: 548–552.

    CAS  Google Scholar 

  • Abbas, H.K., and Duke, S.O., 1995, Phytotoxins from plant pathogens as potential herbicides, Journal of Toxicology–Toxin Reviews 14: 523–543.

    CAS  Google Scholar 

  • Abbas, H.K., and Duke, S.O., 1997, Plant pathogens and their phytotoxins as herbicides, in: Toxins in Plant disease Development and Evolving Biotechnology, R.K. Upadhyay and K.G. Mukerji, eds., Oxford & IBH Publishing, New Delhi, pp. 1–20.

    Google Scholar 

  • Abbas, H.K., and Shier, W.T., 1997, Phytotoxicity of australifungin and fumonisins to weeds, The 1997 Brighton Crop Protection Conference–Weeds, pp. 795–800.

    Google Scholar 

  • Abbas, H.K., and Shier, W.T., 1998, Fumonisins as mycotoxins and phytotoxins, Recent Res Devel. in Agricultural & Food Chem. 2: 27–47.

    Google Scholar 

  • Abbas, H.K., Mirocha, C. J., and Shier, W. T., 1984a, Mycotoxins produced from fungi isolated from foodstuffs and soil: Comparison of toxicity in fibroblasts and rat feeding tests, Appl. Environ. Microbiol. 48: 654–661.

    PubMed  CAS  Google Scholar 

  • Abbas, H.K., Shier, W. T., and Mirocha, C. J., 1984b, Sensitivity of cultured human and mouse fibroblasts to trichothecenes, J. Assoc. Off. Anal. Chem. 67: 607–610.

    PubMed  CAS  Google Scholar 

  • Abbas, H.K., Boyette, C.D., Hoagland, R.E., and Vesonder, R.F., 1991, Bioherbicidal potential of Fusarium moniliforme and its phytotoxin, fumonisin, Weed Science 39: 673–677.

    CAS  Google Scholar 

  • Abbas, H.K., Paul, R.N., Boyette, C.D., Duke, S.O., and Vesonder, R.F., 1992, Physiological and ultrastructural effects of fumonisin on jimsonweed leaves, Canadian Journal of Botany 70: 1824–1833.

    Article  CAS  Google Scholar 

  • Abbas, H.K., Boyette, C.D., and Vesonder, R.F., 1993a, A biological control of weeds using AAL-toxin, United States Patent 5,256, 628; Date of patent: October 26, 1993, 10 pp.

    Google Scholar 

  • Abbas, H.K., Duke, S.O., and Tanaka,T., 1993b, Phytotoxicity of fumonisins and related compounds, Journal of Toxicology–Toxin reviews 12: 225–251.

    Google Scholar 

  • Abbas, H.K., Gelderblom, W.C.A., Cawood, M.E., and Shier, W.T., 1993c, Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.), Toxicom 31: 345–353.

    Article  CAS  Google Scholar 

  • Abbas, H.K., Vesonder, R.F., Boyette, C.D., and Peterson, S.W., 1993d, Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium), Canadian Journal of Botany7l: 155–160.

    Google Scholar 

  • Abbas, H.K., Tanaka, T., Duke, S.O., Porter, J.K., Wray, E.M., Hodges, L., Sessions, A.E., Wang, E., Merrill, A.H., and Riley, R.T., 1994, Fumonisin and AAL-toxin-induced disruption of sphingolipid metabilism with accumulation of free sphingoid bases: Involvement in plant disease, Plant Physiology 106: 1085–1093.

    PubMed  CAS  Google Scholar 

  • Abbas, H.K., Duke, S.O., Paul, R.N., Riley, R.T., and Tanaka, T., 1995a, AAL-toxin, a potent natural herbicide disrupts sphingolipid metabolism in plants, Pesticide Science 43: 181–187.

    Article  CAS  Google Scholar 

  • Abbas, H.K., Tanaka T., and Duke, S.O., 1995b, Pathogenicity of Alternaria alternata and Fusarium moniliforme and phytotoxicity ofAAL-toxin and fumonisin B1 on tomato cultivars, Journal ofPhytopathology 143: 329–334.

    Article  CAS  Google Scholar 

  • Abbas, H.K., Tanaka, T., Duke, S.O., and Boyette, C.D., 1995c, Susceptiility of various crop and weed species to AAL-toxin, a natural herbicide, Weed Technology 9: 125–130.

    CAS  Google Scholar 

  • Abbas, H.K., Tanaka, T., and Shier, W.T., 1995d, Biological activity of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cells cultures, Phytochemistry 35: 1681–1689.

    Article  Google Scholar 

  • Abbas, H.K., Duke, SD., Shier, W.T., Riley, R.T., and Kraus, G.A., 1996, The chemistry and biological activities of the natural products AAL-toxin and the fumonisins, in: Natural Toxins 2. Structure, Mechanism of Action, and Detection, Advances in Experimental Medicine and Biology, Vol. 391, eds., B.R. Singh and A.T. Tu, Plenum, New York, pp. 293–308.

    Google Scholar 

  • Abbas, H.K., Smeda, R. J., Duke, S.O., and Shier, W.T., 1997a, Fumonisin-plant interactions, Bull. Inst. Compr. Agr. Sci. Kinki Univ. 5: 63–73.

    CAS  Google Scholar 

  • Abbas, H.K., Duke, S.O., Shier, W.T., Badria, F.A., Ocamb, C.M., Woodward, R.P., Xie, W., and Mirocha, C.J., I997b, Comparison of ceramide synthase inhibitors with other phytotoxins produced by Fusarium species, Journal of Natural Toxins 6: 163–181.

    Google Scholar 

  • Abbas, H.K., Duke, S.O., Merrill, A.H.,Wang, E., and Shier, W.T.,1998a, Phytotoxicity of australifungin, AAL-toxins and fumonisin B, to Lemna pausicostata, Phytochemistry 47: 1509–1514.

    Google Scholar 

  • Abbas, H.K., Paul, R.N., Riley, R.T., Tanaka, T., and Shier, W.T., 1998b, Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solanum nigrum L.) leaf discs and correlation with biochemical measures of toxicity, Toxicon 36: 1821–1832.

    Article  PubMed  CAS  Google Scholar 

  • Abbas, H.K., Shier, W.T., Seo, J.A., Lee, Y. W., and Musser, S.M., 1998c, Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from Fusarium spp. fungi, Toxicon 36: 2033–2037.

    Article  PubMed  CAS  Google Scholar 

  • Abbas, H.K., Duke, S.O., and Tanaka, T., 1999, Phytotoxicity of fumonisins and related compounds, Journal of Toxicology- Toxin Reviews 12: 225–251.

    Google Scholar 

  • Abbas, H.K., Duke, M.V., Shier, W.T., Riley, R.T., Merrill, A.H., Duke, S. O., 2000a, The structure-activity relationships of fungal toxins that disrupt sphingolipid biosynthesis in plant and animal systems, 3rd IWSC, Foz do Iguassu, Brazil.

    Google Scholar 

  • Abbas, H.K., Smeda, R. J., Gerwick, B.C., and Shier, W.T., 20006, Fumonisin B1 from the fungus Fusarium moniliforme causes contact toxicity in plants: Evidence from studies with biosynthetically labeled toxin, Journal of Natural Toxins 9: 85–100.

    Google Scholar 

  • Barbour, S., Edidin, M., Felding-Habermann, B., Taylor-Norton, J., Radin, N. S., and Fenderson, B. A., 1992, Glycolipid depletion using a ceramide analog (PDMP) alters growth, adhesion, and membrane lipid organization in human A431 cells, J. Cell. Phys. 150: 610–619.

    Article  CAS  Google Scholar 

  • Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F. O., Spiteller, G., and Vleggaar, R., 1988, Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme, J. Chem. Soc. Chem. Commun. 1988: 743–745.

    Article  Google Scholar 

  • Bielawska, A., Greenberg, M. S., Perry, D., Jayadev, S., Shayman, J. A., McKay, C., and Hannun, Y. A., 1996, (IS, 2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-l-propanol as an inhibitor of ceramidase, J. Biol. Chem. 271: 12646–12654.

    Google Scholar 

  • Bottini, A.T., and Gilchrist, D.G., 1981, Phytotoxins I. A 1-Aminodimethylheptadecapentol from Alternaria alternata f. sp. Lycopersici, Tetrahedron Letters 22: 2719–2722.

    Article  CAS  Google Scholar 

  • Bottini, A.T., Bowen, J.R., and Gilchrist, D.G., 1981, Phytotoxins H. Characterization of a phytotoxic fraction from Alternaria alternata f. Sp.lycopersici, Tetrahedron Letters 22: 2723–2726.

    Article  CAS  Google Scholar 

  • Brandwagt, B.F., Mesbah, L.A., Takken, F.L.W., Laurent, P.L., Knepper, T.J.A., Hille, J., and Nijkamp, H.J.J., 2000, A longevity assurance gene homolog of tomato mediated resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1, Proc. Natnl. Acad. Sci. USA 97: 4961–4966.

    Article  CAS  Google Scholar 

  • Brandwagt, B.F., Kneppers, T.J.A., Van der Weerden, G.M., Kijkamp, J.J., and Hille, J., 2001, Most AAL toxin-sensitive Nicotiana species are resistant to the tomato fungal pathogen Alternaria alternata f. sp. lycopersici, Molec. Plant-Microbe Interactions 14: 460–470.

    Article  CAS  Google Scholar 

  • Caldas, E.D., Jones, A.D., Ward, B., Winter, C.K., and Gilchrist, D.G., 1994, Structural characterization of three new AAL-toxins produced by Alternaria alternata f. sp. lycopersici, J. Agric. Food Chem. 42: 327–333.

    Article  CAS  Google Scholar 

  • Clouse, S.D., and Gilchrist, D.C., 1987, Interactin of the asc locus in F8 paired lines of tomato with Alternaria alternata f. sp. lycopersici and AAL-toxin, Phytopathology 77: 80–82.

    Article  CAS  Google Scholar 

  • Cutler, H.G., 1999, Potentially useful natural product herbicides from microorganisms, in: Principles and Practices on Plant Ecology: Allelochemical Interactions, Inderjit, K.M.M. Dakshini and C.L. Foy, eds., CRC Press, Boca Raton, pp. 497–516.

    Google Scholar 

  • Dayan, F.E., Romagni, J.G., Tellez, M.R., Rimando, A.M. and Duke, S.O., 1999, Managing weeds with natural products, Pesticide Outlook 10: 185–188.

    CAS  Google Scholar 

  • Duke, S.O., 1986, Microbial phytotoxins as herbicides–a perspective, in: The Science ofAllelopathy (eds A.R. Putnam and C.S. Tang) John Wiley, New York, pp. 287–304.

    Google Scholar 

  • Duke, S.O., and Abbas, H.K., 1995, Natural products with potential use as herbicides, American Chemical Society Symposium Series 582: 348–362.

    CAS  Google Scholar 

  • Duke, S.O., and Lydon, J., 1993, Natural phytotoxins as herbicides, American Chemical Society Symposium Series 524: 110–124.

    CAS  Google Scholar 

  • Duke, S.O., Abbas, H.K., Boyette, C.D., and Gohbara, M., 1991, Microbial compounds with the potential of herbicidal use, Brighton Crop Protection Conference, Weeds-1991, pp. 155–164.

    Google Scholar 

  • Duke, S.O., Abbas, H.K., Amagasa, T., and Tanaka, T., 1996a, Phytotoxins of microbial origin with potential for use as herbicides, in: Crop Protection Agents from Nature: Natural Products and Analogues, Critical Reviews on Applied Chemistry, Vol. 35, L.G. Copping ed., Society for Chemical Industries, Cambridge, UK, pp. 82–113.

    Google Scholar 

  • Duke, S.O., Abbas, H.K., Duke, M.V., Lee, H.J., Vaughn, K.C., Amagasa, T., and Tanaka, T., 1996b, Microbial phytotoxins as potential herbicides, Journal of Environmental Science and Health, Part B–Pesticides, Food Contaminants, and Agricultural Wastes B31: 427–434.

    Google Scholar 

  • Duke, S.O., Dayan, F.E., Hernandez, A., Duke, M.V., and Abbas, H.K., 1997, Natural products as leads for new herbicide modes of action, Brighton Crop Protection Conference, Weeds - 1997, 2: 579–586.

    Google Scholar 

  • Duke, S.O., F.E. Dayan, and A.M. Rimando, 2000a, Natural products and herbicide discovery, in: Herbicides and their Mechanisms of Action, A.H. Cobb and R.C. Kirkwood, eds., Academic Press, Sheffield, pp. 105–133.

    Google Scholar 

  • Duke, S.O., F.E. Dayan, J.G. Romagni, and A.M. Rimando, 2000b, Natural products as sources of herbicides: current status and future trends, Weed Res. 40: 99–111.

    Article  CAS  Google Scholar 

  • Duke, S.O., F.E. Dayan, and J.G. Romagni, 2000c, Natural products as sources for new mechanisms of herbicidal action, Crop Protect. 19: 583–589.

    Article  CAS  Google Scholar 

  • Fuson, G.B., and Pratt, D., 1988 Effects of the host-selective toxins of Alternaria alternata f. sp. lycopersici on suspension-cultured tomato cells, Phytopathology78: 1641–1648.

    Google Scholar 

  • Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. C., Horak, R. M., Vleggaar, R., and Kriek, N. P. J., 1988, Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme, Appl. Environ. Microbiol. 54: 1806–1811.

    PubMed  CAS  Google Scholar 

  • Gilchrist, D., 1983, Molecular modes of action, in: Toxins and Plant Pathogenesis, J.M. Daly, and B.J. Deverall, eds., Academic Press, New York, pp. 81–136.

    Google Scholar 

  • Gilchrist, D.G., 1997, Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signaling, Cell Death Differ. 4: 689–698.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist, D. G., and Grogan, R. G., 1976, Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici, Phytopathology 66: 165–171.

    Article  Google Scholar 

  • Gilchrist, D.G., Wang, H., and Bostock, M., 1995, Sphingosine-related mycotoxins in plant and animal diseases, Can J. Bot. 73 (Suppl. 1): 5459–5467.

    Article  Google Scholar 

  • Gilchrist, D.D., Wang, H., Lincoln,, J., Overduin, B., and Bostock, R., 1998, Lethal logic in apoptosis: toxin trigger programmed cell death during disease in eukaryotic cells, Dey. Plant Pathol. 13: 141–150.

    CAS  Google Scholar 

  • Hakomori, S-I., Yamamura, S., and Handa, K., 1998, Signal transduction through glyco(sphingo)lipids, Ann. New York Acad. Sci. 845: 1–10.

    Article  CAS  Google Scholar 

  • Hannun, Y. A., and Bell, R. M., 1993, The sphingomyelin cycle: a prototypic sphingolipid signaling pathway, Advances Lipid Res. 25: 27–41.

    CAS  Google Scholar 

  • Hannun, Y. A., and Obeid, L. M., 1995, Ceramide: an intracellular signal for apoptosis, TIBS 20: 73–77.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., Obeid, L. M., and Wolff, R. A., 1993, The novel second messenger ceramide: Identification, mechanism of action, and cellular activity, Advances Lipid Res. 25: 43–64.

    CAS  Google Scholar 

  • Harvey, A. L., 1990, Cytolytic toxins, in: Handbook ofToxinology, W.T. Shier and D. Mebs, eds., Marcel Dekker Inc., New York, pp. 1–66.

    Google Scholar 

  • Harwood, J.L., 1998, What’s so special about plant lipids?, in: Plant Lipid Biosynthesis, Fundamentals and Agricultural Applications, J.L. Harwood, ed., Cambridge University Press, Cambridge, UK, pp. 1–26.

    Google Scholar 

  • Horn, W. S., Smith, J. L., Bills, G. F., Raghoobar, S. L., Helms, G. L., Kurtz, M. B., Marrinan, J. A., Frommer, B. R., Thornton, R. A., and Mandala, S. M., 1992, Sphingofungins E and F: Novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii, J. Antibiotics 45: 1692–1696.

    Article  CAS  Google Scholar 

  • Humpf, H. U., Schmelz, E. M., Meredith, F. I., Vesper, H., Vales, T. R., Wang, E., Menaldino, D. S., Liotta, D. C., and Merrill, A. H. Jr., 1998, Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase. Formation ofN-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, API, and a new category of ceramide synthase inhibitor, J. Biol. Chem. 273: 19060–19064.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman, T.S., Marasas, W. F. O., Thiel, P. G., Gelderblom, W. C. A., Cawood, M., and Coetzer, J. A. W., 1990, Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1, OnderstepoortJ. Vet. Res. 57: 269–275.

    CAS  Google Scholar 

  • Kenyon, W.H., Duke, S.O., and Vaughn, K.C., 1985, Sequence of herbicidal effects of acifluorfen on ultrastructure and physiology of cucumber cotyledon discs, Pestic. Biochem. Physiol. 24: 240–250.

    Article  CAS  Google Scholar 

  • Kluepfel, D., Bagli, J., Baker, H., Charest, M-P., Kudelski, A., Sehgal, S. N., and Vezina, C., 1972, Myriocin, a new antifungal antibiotic from Myriococcum albomyces, J. Antibiotics 25: 109–115.

    Article  CAS  Google Scholar 

  • Luberto, C., and Hannun, Y. A., 1999, Sphingolipid metabolism in the regulation of bioactive molecules, Lipids 34: S5 - S10.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V., 1993, Sphingolipids, in: Lipid Metabolism in Plants, T.S. Moore, ed., CRC Press, Boca Raton, FL., pp. 285–308.

    Google Scholar 

  • Lynch, D.V., 2000, Enzymes of sphingolipid metabolism in plants, Methods Enzymol. 311: 130–149.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V., and Fairfield, S.R., 1993, Sphingolipid long-chain base synthesis in plants, Plant Physiol. 103: 1421–1429.

    PubMed  CAS  Google Scholar 

  • Lynch, D.V., and Phinney, A.J., 1995, The transbilayer distribution of glucosylceramide in plant plasma membrane, in: Plant Lipid Metabolism, J.-C. Kader and P. Mazliak, eds., Kluwer, Dordrecht, pp. 239–241.

    Google Scholar 

  • Lynch, D.V., Caffrey, M., Hogan, J.L., and Steponkus, P.L., 1992, Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism, Biophys. J. 61: 1289–1300.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V., Spence, R.A., Theiling, K.M., Thomas, K.W., and Lee, M.T., 1993, Enzymatic reactions involved in ceramide metabolism, in: Biochemical and Molecular-Biological Aspects of Membrane and Storage Lipids of Plants, C.R. Somerviulle and N. Murata, eds., Amer. Soc. Plant Physiol., Rockville, MD, pp. 183–190.

    Google Scholar 

  • Lynch, D.V., Criss, A.K., Lehoczky, J.L., and Bui, V.T., 1997, Ceramide glucosylation in bean hypocotyl microsomes: evidence that steryl glucoside serves as glucose donor, Arch. Biochem. Biophys. 340: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Mandala, S. M., Frommer, B. R., Thornton, R. A., Kurtz, M. B., Young, N. M., Cabello, M. A., Genilloud, O., Liesch, J. M., Smith, J. L., and Horn, W. S., 1994, Inhibition of serine palmitoyltransferase activity by lipoxamycin, J. Antibiotics 47: 376–379.

    Article  CAS  Google Scholar 

  • Mandala, S. M., Thornton, R. A., Frommer, B. R., Curotto, J. E., Rozdilsky, W., Kurtz, M. B., Giacobbe, R. A., Bills, G. F., Cabello, M. A., Martin, I., Pelaez, and Harris, G. H. 1995, The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis, J. Antibiotics 48: 349–356.

    CAS  Google Scholar 

  • Mandala, S. M., Thornton, R. A., Frommer, B. R., Dreikorn, S., and Kurtz, M. B., 1997, Viridiofungins, novel inhibitors of sphingolipid synthesis, J. Antibiotics 50: 339–343.

    Article  CAS  Google Scholar 

  • Marasas, W. F. O., Kellerman, T. S., Gelderblom, W. C. A., Coetzer, J. A. W., Thiel, P. G., and van der Lugt, J. J., 1988, Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme, Onderstepoort J. Vet. Res. 55: 197–203.

    PubMed  CAS  Google Scholar 

  • Merrill, A. H. Jr., Hannun, Y. A., and Bell, R. M., 1993a, Introduction: Sphingolipids and their metabolites in cell regulation, Advances Lipid Res. 25: 1–24.

    CAS  Google Scholar 

  • Merrill, A.H. Jr., Wang, E., Gilchrist, D.G., and Riley, R.T., 1993b, Fumonisins and other inhibitors of de novo sphingolipid biosynthesis, Adv. Lipid Res. 26: 215–234.

    PubMed  CAS  Google Scholar 

  • Merrill, A. H., Schmelz, E-M., Dillehay, D. L., Spiegel, S., Shayman, J. A., Schroeder, J. J., Riley, R. T., Voss, K. A., and Wang, E., 1997, Sphingolipids —the enigmatic lipid class: biochemistry, physiology and pathophysiology, Toxicol. App! Pharmacol. 142: 208–225.

    Article  CAS  Google Scholar 

  • Moore, T., Martineau, B., Bostock, R.M., Lincoln, J.E., and Gilchrist, DG., 1999, Molecular and genetic characterization of ethylene involvement in mycotoxin-induced cell death, Physiol. Molec. Plant Paththol. 54: 73–85.

    Article  CAS  Google Scholar 

  • Morita, N., Nakazato, H., Okuyama, H., Kim, Y., and Thompson, G.A. Jr., 1996, Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza, Biochim. Biophys. Acta 1290: 53–62.

    Article  PubMed  Google Scholar 

  • Moussatos, V.V., Lucas, W.J., and Gilchrist, D.G., 1993, AAL toxin-induced changes in Lycopersicon esculentum Mill: differential sucrose transport in tomato lines isogenic for the Asc locus, Physiol. Molec. Plant Pathol. 42: 359–371.

    Article  CAS  Google Scholar 

  • Moussatos, V.V., Yang, S.F., Ward, B., and Gilchrist, D.G., 1994, AAL-toxin induced physiological changes in Lycopersicon esculentum Mill: roles for ethylene and pyrimidine intermediates in necrosis, Physiol. Molec. Plant Pathol. 44: 455–468.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, T., Roy, K., Coutinho, L., Rupp, R. H., and Ganguli, B. N., 1987, Fumifungin, a new antifungal antibiotic from Aspergillusfumigatus Fresenius 1863, J. Antibiotics 40: 1050–1052.

    Article  CAS  Google Scholar 

  • Norred, W. P., 1993, Fumonisins–Mycotoxins produced by Fusarium moniliforme, J. Toxicol. Environ. Health 38: 309–328.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, S., and Kohmoto, K., 1983, Host specific toxins and chemical structures from Alternaria species. Annual Reviews Phytopathol. 21: 87–116.

    Article  CAS  Google Scholar 

  • NTP (National Toxicology Program), 1999, Toxicology and carcinogenesis studies on fumonisin B1 in F344/N rats and B6CF1 mice (feed studies), Technical Report Series No. 496, NIH Publication No. 99–3955, U. S. Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC.

    Google Scholar 

  • Riley, R. T., An, N.-H., Showker, J. L., Yoo, H.-S., Norred, W. P., Chamberlain, W. J., Wang, E., Merrill, A. H. Jr., Montelin, G., Beasley, V. R., and Haschek, W. M., 1993, Alteration of tissue and serum sphinganine to sphingosine ratio: An early biomarker of exposure to fumonisin-containing feeds in pigs, Toxicol: Applied Pham. 118: 105–112.

    Article  CAS  Google Scholar 

  • Riley, R. T., Hinton, D. M., Chamberlain, W. J., Bacon, C. W., Wang, E., Merrill, A. H. Jr., and Voss, K. A., 1994. Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: A new mechanism ofnephrotoxicity, J Nutr. 124: 594–603.

    PubMed  CAS  Google Scholar 

  • Riley, R.T., Wang, E., Schroeder, J. J., Smith, E. R., Plattner, R. D., Abbas, H. K., Yoo, H-S., and Merrill, A.H., 1996, Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogecity of fumonisin, Natural Toxin 4: 3–15.

    Article  CAS  Google Scholar 

  • Rosenberg, P., 1990, Phospholipases, in: Handbook of Toxinology, W.T. Shier and D. Mebs, eds., Marcel Dekker, Inc., New York, pp. 67–277.

    Google Scholar 

  • Sasaki, S., Hashimoto, R., Kiuchi, M., Inoue, K., Ikumoto, T., Hirose, R., Chiba, K., Hoshino, Y., Okumoto, T., Fujita, T., 1994, Fungal metabolites, Part 14. Novel potent immunosuppressants, mycesterincins, produced by Mycelia sterilia, J. Antibiotics 47: 420–433.

    Article  CAS  Google Scholar 

  • Scott, P. M., 1993, Fumonisins, Int. J. Food Microbiol. 18: 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Shier, W.T., and Shier, A.C., 2000, Sphingosine-and ceramide-analog toxins-an update, Journal of Toxicology-Toxin Reviews 193: 189–246.

    Google Scholar 

  • Shier, W.T., Abbas, H.K., and Badria, F.A., 1997, Structure-activity relationships of the corn fungal toxin fumonisin B: implications for food safety, Journal of Natural Toxins 6: 225–242.

    CAS  Google Scholar 

  • Shier, W.T., and Abbas, H.K., 1999, Current issues in research on fumonisins, mycotoxins which may cause nephropathy, Journal of Toxicology-Toxin Reviews 18: 323–335.

    CAS  Google Scholar 

  • Siehl, D.L., 1997, Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis, in: Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, R.M. Roe, J.D. Burton, and R.J. Kuhr, eds., lOs Press, Amsterdam, pp. 37–67.

    Google Scholar 

  • Siler, D.J., and Gilchrist, D. G., 1983, Properties of host specific toxins produced by Alternaria alternata f. sp. lycopersici in culture and in tomato plants, Physiological Plant Pathology 23: 265–274.

    Article  CAS  Google Scholar 

  • Somerville, C., Browse, J., Jaworski, J.G., and Ohlrogge, J.G., 2000, Lipids, in: Biochemistry and Molecular Biology of Plants, B. Buchanan, W. Gruissem and R. Jones, eds., Amer. Soc. Plant Physiol., Rockville, MD, pp. 456–457.

    Google Scholar 

  • Strobel, G., Kenfield, D., Bunker, G., Sugawara, F., and Clardy, J., 1991, Phytotoxins as potential herbicides, Experientia 47: 819–826.

    Article  CAS  Google Scholar 

  • Tanaka, T., Abbas, H.K., and Duke, S.O., 1993, Structure-dependent phytotoxicity of fumonisins and related compounds in a duckweed bioassay, Phytochemistry 33: 779–785.

    Article  CAS  Google Scholar 

  • U. S. Food and Drug Administration (FDA), 2000, Guidance for industry: Fumonisin levels in human foods and animal feeds, June 6, 2000, pp. 1–4.

    Google Scholar 

  • VanMiddlesworth, F., Ciacobbe, R. A., Lopez, M., Garrity, G., Bland, J. A., Bartizal, K., Fromtling, R. A., Polishook, J., Zweerink, M., Edison, A. M., Rozdilsky, W., Wilson, K. E., and Monaghan, R. L., 1992, Sphingofungins A, B, C, and D: a new family of antifungal agents, J. Antibiotics 45: 861–867.

    Article  CAS  Google Scholar 

  • Vesonder, R. F., Peterson, R. E., Labeda, D., and Abbas, H.K., 1992, Comparative phytotoxicity of the fumonisin, AAL-toxin and yeast sphingolipids in Lemna minor L. (Duckweed), Archives of Environmental Contamination and Toxicology 23: 464–467.

    Article  CAS  Google Scholar 

  • Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H. Jr., 1991, Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme, J. Biol. Chem. 266: 14486–14490.

    PubMed  CAS  Google Scholar 

  • Wang, E., Ross, P. F., Wilson, T. M., Riley, R. T., and Merrill, A. H. Jr., 1992, Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme, J. Nutr. 122: 1706–1716.

    PubMed  CAS  Google Scholar 

  • Wang, H., Jones, C., Ciacci-Zanella, J., Holt, T., Gilchrist, D.G., and Dickman, MB, 1996a, Fumonisins and Alternaria alternata f sp. lycopersici toxins: Sphinganine analog mycotoxins induce apoptosis in monkey kidney cells, Proc. Natl. Acad. Sci. USA 93: 3461–3465.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G., 1996b, Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development, Plant Cell 8: 375–391.

    PubMed  CAS  Google Scholar 

  • Winter, C.K., Gilchrist, D.G., Dickman, M.B., and Jones, C., 1996, Chemistry and biological activity of AAL toxins, in: Fumonisins in Food, L. Jackson et al., eds., Plenum Press, NY, pp. 307–316.

    Google Scholar 

  • Yoo, H-S., Norred, W. P., Showker, J., and Riley, R. T., 1996, Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisin-induced cytotoxicity, Toxicology and Applied Pharmacology 138: 211–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abbas, H.K., Duke, S.O., Shier, W.T., Duke, M.V. (2002). Inhibition of Ceramide Synthesis in Plants by Phytotoxins. In: Upadhyay, R.K. (eds) Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4439-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3384-3

  • Online ISBN: 978-1-4757-4439-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics