Structural Diversity of Lichen Metabolites and Their Potential Use

  • Joanne G. Romagni
  • Franck E. Dayan
Chapter

Abstract

Lichens are symbiotic organisms composed of a fungal partner, the mycobiont, usually in association with one or more photosynthetic partners, the photobiont(s). The photobionts can be green alga, cyanobacteria or both. There are approximately 17,000 species of mycobionts whereas there are only ca. 40 species ofphotobionts. Therefore, the taxonomic name of the lichen is traditionally determined by the species of the fungal partner. The mycobiont, being the host partner for the photobiont, generally determines the morphology of the lichen species. Most lichen mycobionts are not known to exist naturally without the photobiont, whereas many of the photobionts, like the cyanobacteria Nostoc, Scytonema, and the green algae, Trentepohlia, are known to flourish alone in nature. However, because the symbiosis is so complex, lichens are normally referred to as individual organisms rather than separate organisms.

Keywords

Ursolic Acid Lichen Species Usnic Acid Lichen Substance Lichen Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo-Khatwa, A.N., Al-Robai, A.A., and Al-Jawhari, D.A., 1996, Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria, Nat. Toxins 4: 96–102.PubMedCrossRefGoogle Scholar
  2. Airaksinen, M.M., Perua, P., Ala-Fossi-Salokangas, L., Antere, S., Lukkarinen, J., Saikkonen, M., and Stenback, F., 1986, Toxicity of plant material used as emergency food during famines in Finland, J. Ethnopharm. 18: 273–296.CrossRefGoogle Scholar
  3. Ali, M.S., Mahmud, S., Perveen, S., Rizwani, G.H., and Ahmad, V.U., 1999, Screening for the antimicrobial properties of the leaves of Calophyllum inophyllum Linn., Guttiferae. J. Chem. Soc. Pak. 21: 174–178.Google Scholar
  4. Asahina,Y. and Shibata, S., 1954, Chemistry of Lichen Substances, Society for the promotion of science, Tokyo.Google Scholar
  5. Bachelor, F.W., King, G.G., and Richardson, J., 1990, Phlebic acids C and D, lichen acids from Peltigera aphthosa, Phytochemistry 29: 601–604.CrossRefGoogle Scholar
  6. Bachmann, H., and Portmann, P., 1981, Agent for oxidative dyeing of hair, Ger. Offen. DE 2939303 pp. 18.Google Scholar
  7. Bouaid, K., and Vincente, C., 1998, Chlorophyll degradation affected by lichen substances, Annales Botanici Fennici. 35: 71–74.Google Scholar
  8. Brewer, D., Jen, W.C., Jones, G.A., and Taylor, A., 1984, The antibacterial activity of some naturally occurring 2,5dihydroxy-1,4-benzoquinones, Can. J. Microbiol. 30: 1068–1072.PubMedCrossRefGoogle Scholar
  9. Cha, H.-J., Park, M.-T., Chung, H.-Y., Kim, N. D., Sato, H., Seiki, M., and Kim, K.-W., 1998. Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells, Oncogene 16: 771–778.PubMedCrossRefGoogle Scholar
  10. Chang, L.-C., Sheu, H.-M., Huang, Y.-S., Tsai, T.-R., and Kuo, K.-W.,1999., A novel function of emodin: enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells, Biochem. Pharmacol. 58: 49–57.Google Scholar
  11. Choi, J.S., Chung, H.Y., Jung, H.A., Park, H.J., and Yokozawa, T., 2000, Comparative evaluation of antioxidant potential of alaternin (2-hydroxyemodin) and emodin, J. Agric. Food Chem. 48: 6347–6351.PubMedCrossRefGoogle Scholar
  12. Choi, J.S., Lee, H.J., Park, K.Y., Ha, J., Ok, K., and Sam, S., 1997, In vitro antimutagenic effects of anthraquinone aglycons and naphthopyrone glycosides from Cassia tora, Planta Med. 63: 11–14.Google Scholar
  13. Clark, S.J., Henderson, I.F., Hill, D.J., and Martin, A.P., 1999, Use of lichen secondary metabolites as antifeedants to protect higher plants from damage caused by slug feeding, Ann. Appl. Biol. 134: 101–108.CrossRefGoogle Scholar
  14. Culberson, C.F., 1969, Chemical and Botanical Guide to Lichen Products, University of North Carolina Press, Chapel Hill, USA.Google Scholar
  15. Culberson, C.F., and Elix, J.A., 1989, Lichen substances, in: Methods in Plant Biochemistry Vol.1: Plant Phenolics, Dly and Harboume, eds., Academic Press, London.Google Scholar
  16. Culberson, C.F., Culberson, W.L., and Johnson, A., 1992, Characteristic products in cultures of chemotypes of the Ramalina siliquosa complex, Mycologia 84: 705–714.CrossRefGoogle Scholar
  17. Duan, H., Takaishi, Y., Momota, H., Ohmoto, Y., Taki, T., Jia, Y., and Li, D., 1999, Immunosuppressive diterpenoids from Tripterygium wilfordii, J. Nat. Prod. 62: 1522–1525.PubMedCrossRefGoogle Scholar
  18. Elix, J.A., 1996, Biochemistry and secondary metabolites, in: Lichen Biology, Cambridge University Press, Cambridge, London.Google Scholar
  19. Elix, J.A., Lumbsch, H.T., and Wardlaw, J.H., 1995, Conhypoprotocetraric acid, a new lichen ß-orcinol depsidone, Aust. J. Chem. 48: 1479–1483.CrossRefGoogle Scholar
  20. Elix, J.A., and McCaffery, L.F., 1997, Epiphorellic acid 3, a new lichen diphenyl ether, Aust. J. Chem. 50: 1104–1103.Google Scholar
  21. Elix, J.A., and Wardlaw, J.H., 1996, The structure of dissectic acid, a ß-orcinol meta-depside from the lichen Heterodermia dissecta, Aust. J. Chem. 49: 539–540.CrossRefGoogle Scholar
  22. Endo, Y., Hayashi, H., Sato, T., Maruno, M., Ohta, T., and Nozoe, S., 1994, Confluentic acid and 2’-0-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus sucuuba, Chem. Pharm. Bull. 42: 1198–1201PubMedCrossRefGoogle Scholar
  23. Endo, T., Takahagi, T., Kinoshita, Y., Yamamoto, Y., and Sato, F., 1998, Inhibition of photosystem II of spinach by lichen-derived depsides, Biosci. Biotechnol. Biochem. 62: 2023–2027.CrossRefGoogle Scholar
  24. Ernst-Russell, M.A., Chai, C.L.L., Hume, A.M., Waring, P., Hockless, D.C.R., and Elix, J.A., 1999, Structure revision and cytotoxic activity of scabrosin esters, epidithiopiperazinediones from the lichen Xanthiparmelia scabrosa, Aust. J. Chem. 52: 279–283.CrossRefGoogle Scholar
  25. Ernst-Russell, M.A., Chai, C.L.L., Wardlaw, J. H., and Elix, J.A., 2000, Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta, J. Nat. Prod. 63: 129–131.PubMedCrossRefGoogle Scholar
  26. Fahselt, D., 1993, UV absorbance by thallus extracts ofumbilicate lichens, Lichenologist 25: 415–422.Google Scholar
  27. Fahselt, D., 1996, Individuals, populations and population ecology, in: Lichen Biology, T.H. Nash III, ed., Cambridge University Press, Cambridge, U.K.Google Scholar
  28. Ferrari, G., Ghione, and M., Ghirardi, P., 1988, Antiplaque anticaries dentifrices containing usnic acid, S. African ZA 8704549, pp. 24.Google Scholar
  29. Fernandez, E., Reyes, A., Hidalgo, M.E., and Quilhot, W., 1998, Photoprotector capacity of lichen metabolites assessed through the inhibition of the 8-methoxypsoralen photobinding to protein, J. Photochem. Photobiol. 42: 195–201.CrossRefGoogle Scholar
  30. Findlay, J., 2000, Modified calycins for targeting ofhair fibers or skin surface, PCT Int. Appl. WO 0048558, pp. 33.Google Scholar
  31. Gardner, C.R. and Mueller, D.M., 1981, Factors affecting the toxicity of several lichen acids: Effect of pH and lichen acid concentration, Amer. J. Bot. 68: 87–95.CrossRefGoogle Scholar
  32. Giez, I., Lange, O.L., and Proksch, P., 1994, Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis, Biochem. Syst. Ecol. 22: 113–120.CrossRefGoogle Scholar
  33. Goldner, W.R., Hoffman, F.M., and Medve, R.J., 1986, Allelopathic effects of Cladonia cristatella on ectomycorrhyizal fungi common to bituminous strip-mine spoils, Can. J. Bot., 64: 1586–1590.CrossRefGoogle Scholar
  34. Gollapudi, S.R., Telikepalli, H., Jampani, H.B., Mirhom, Y.W., Drake, S.D., Bhattiprolu, K.R., Vander V., David, M., and Lester, A., 1994, Alectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa, J. Nat. Prod. 57: 934–938.PubMedCrossRefGoogle Scholar
  35. Gonzalez-Tejero, M.R., Martinez-Lirola, M.J., Casares-Porcel, M., and Molero-Mesa, J., 1995, Three lichens used in popular medicine in eastern Andalucia (Spain), Econ. Bot. 49: 96–98.CrossRefGoogle Scholar
  36. Guzow-Krzeminska, B., and Wegrzyn, G., 2000, Potential use of restriction analysis of PCR-amplified DNA fragments in construction of molecular data-based identification keys of lichens, Mycotaxon 76: 305–313.Google Scholar
  37. Hale, M.E., 1983, The Biology of Lichens, Edward Arnold, London.Google Scholar
  38. Harris, R.C., Brodo, I.M., and Tonsberg, T. 2000, Lecanora thysanophora, a common leprose lichen in eastern North America, Bryologist 103: 790–793.Google Scholar
  39. Hawksworth, D.L., and Hill, D.J., 1984, The Lichen—forming Fungi, Blackie Press, Glasgow.CrossRefGoogle Scholar
  40. Helminen, J., Jokiranta, J., Paatero, E., Hotanen, U., and Hautala, M., 2000, Preparation and use of plant sterol derivatives offruit acids, PCT Int. Appl. WO 0023461, pp. 27.Google Scholar
  41. Hesbacher, S., Giez, I., Embacher, G., Fiedler, K., Max, W., Trawoger, A., Turk, R., Lange, O.L., and Proksch, P., 1995, Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera), J. Chem. Ecol. 21: 2079–2089.CrossRefGoogle Scholar
  42. Hidalgo, M.E., Fernandez, E., Quilhot, W., and Lissi, E., 1994, Antioxidant activity of depsides and depsidones, Phytochemistry 37: 1585–1587.PubMedCrossRefGoogle Scholar
  43. Higuchi, M., Miura, Y., Kinoshita, Y., Yamamoto, Y., and Mayama, S., 1993, Acne-controlling antibacterial agents containing usnic acids or lichesterinic acids, Jpn. Kokai Tokkyo Koho, pp. 3.Google Scholar
  44. Hollosy, F., Meszaros, G., Bokonyi, G., Idei, M., Seprodi, A., Szende, B., and Keri, G., 2000, Cytostatic, cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in A431 human tumor cells, Anticanc. Res. 20: 4563–4570.Google Scholar
  45. Hui, Y.H., Chang, C.J., Smith, D.L., and McLaughlin, J.L., 1990, 16a-Hydroxy-(-)-kauranoic acid: a selectively cytotoxic diterpene from Annona bullata, Pharm. Res. 7: 376–378.Google Scholar
  46. Hwang, J.-S., Song, K.-S., Kim, Y.-S., Seok, SA., Lee, T-14., and Yoo, I.-D., 1996, Lipid peroxidation inhibitors from Polyozellus multiplex, Sanop Misaengmul Hakhoechi 24: 591–596.Google Scholar
  47. Ichinose, T., Miller, M., and Shibamoto, T., 1994, Inhibition of malondialdehyde formation from liver microsomes by a lichen constituent, Food Chem. Toxicol. 32: 1167–1168.PubMedCrossRefGoogle Scholar
  48. Ingolfsdottir, K., Wiedemann, B., Birgisdottir, M., Nenninger, A., Jonsdottir, S., and Wagner, H., 1997, Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro, Phytomedicine 4: 125–128.PubMedCrossRefGoogle Scholar
  49. Inoue, T., and Iwaida, M., 1980, On the utilization of usnic acid, a lichen substance, J. SCCJ 14: 57–61.Google Scholar
  50. Ishikawa, H., Nishimuro, S., Watanbe, T., and Hirota, M., 1997, Use of ursolic acid for the manufacture of a medicament for suppressing metastasis, Eur. Pat. Appl. EP 774255, pp. 7.Google Scholar
  51. Karnefelt, I., 1990, Evidence of a slow evolutionary change in the speciation of lichens, Bibleotheca Lichenologica 38: 291–306.Google Scholar
  52. Kashiwada, Y., Nagao, T., Hashimoto, A., Ikeshiro, Y., Okabe, H., Cosentino, L.M., and Lee, K.-H., 2000, Anti-AIDS agents38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives, J. Nat. Prod. 63: 1619–1622.PubMedCrossRefGoogle Scholar
  53. Konig, G.M., Wright, A.D., and Franzblau, S.G., 2000, Assessment of antimycobacterial activity of a series of mainly marine derived natural products, Planta Med. 66: 337–342.PubMedCrossRefGoogle Scholar
  54. Kurokawa, S., 1970, Lichen dyes: one of the economic uses of lichens, Natur. Sci. Mus. 37: 14–18.Google Scholar
  55. Kumar, S.K.C., and Müller, K., 1999a, Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism, J. Nat. Prod. 62: 817–820.PubMedCrossRefGoogle Scholar
  56. Kumar, S.K.C., and Müller, K., I 999b, Lichen metabolites. 2. antiproliferative and cytotoxic activity of gyrophoric acid, usnic, and diffractaic acid on human keratinocyte growth, J. Nat. Prod. 62: 821–823.Google Scholar
  57. Kumar, S.K.C., and Müller, K., 2000, Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth. 2. Novel analogues of obtusatic acid, Eur. J Med. Chem. 35: 405–411.CrossRefGoogle Scholar
  58. Kwak, J.-Y., Rhee, I.-K., Lee, K.-B., Hwang, J.-S., Yoo, I.-D., and Song, K.-S., 2000, Thelephoric acid and kynapcin9 in mushroom Polyozellus multiplex inhibit propyl endopeptidase in vitro, J. Microbiol. Biotechnol. 9: 798–803.Google Scholar
  59. Lawrey, J.D., 1983a, Lichen herbivory preference: A test of two hypotheses, Amer. J. Bot. 70: 1188–1194.CrossRefGoogle Scholar
  60. Lawrey, J.D., 1983b, Vulpinic and pinastric acids as lichen antiherbivore compounds: contrary evidence, Bryologist 86: 365–369.CrossRefGoogle Scholar
  61. Lawrey, J.D., 1986, Biological role of lichen substances, Bryologist 9: 111–122.CrossRefGoogle Scholar
  62. Lawrey, J.D., 1993, Lichen allelopathy, Amer. J. Bot.(S) 80: 103.Google Scholar
  63. Lawrey, J.D., 1995, Lichen allelopathy: A review, Am. Chem. Soc. Symp. Ser. 582: 26–38.Google Scholar
  64. Li, B., Lin, Z., and Sun, H., 1991, The chemical constituents of four lichens from China, Yunnan Zhiwu Yanjiu 13: 81–84.Google Scholar
  65. Livesey, S.A., Conner, J., and Currie, L.M., 1997, Prolonged preservation of blood platelets and prevention of cytokine generation by platelets using inhibitor compositions and cold temperatures, PCT Int. Appl. WO 9730350, pp. 23.Google Scholar
  66. Lubrano, C., Poirier, F., and Robin, J.-R., 1999, Use of ergosterol and its derivatives for stimulating the proliferation ofskin cells, PCT Int. Appl. WO 9913858, pp. 21.Google Scholar
  67. Manoj lovic, N.T., Solujic, S., Sukdolak, S., and Krstic, L.J., 2000, Isolation and antimicrobial activity of anthraquinones from some species of the lichen genus Xanthoria, J. Serb. Chem. Soc. 65: 555–560.Google Scholar
  68. Marx, J., 2001, Anti-inflammaroties inhibit cancer growth — but how? Science 291: 581–582.PubMedCrossRefGoogle Scholar
  69. Nakamura, S., Nii, F., Shimizu, M., and Watanabe, I., 1971, Inhibition of phage growth by an antibiotic rugulosin isolated from Myrothecium verucaria I. Properties of the antiphage effect, Jap. J. Microbiol. 15: 113–120.PubMedGoogle Scholar
  70. Nash III, T.H., 1996, Lichen Biology, Cambridge University Press, Cambridge.Google Scholar
  71. Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Nicklaus, M.C., Milne, G.W.A., Proksa, B., and Pommier, Y., 1997, Depsides and depsidones as inhibitors of HIV-1 integrase: Discovery of novel inhibitors through 3D database searching, J. Med. Chem. 40: 942–951.PubMedCrossRefGoogle Scholar
  72. Nylander,W., 1866, Circa novum in studio Lichenum criterium chemicum, Flora 49: 198–201.Google Scholar
  73. Okuyama, E., Hossain, C.F., and Yamazaki, M., 1991, Monoamine oxidase inhibitors from a lichen, Solorina crocea (L.) Ach., Shoyakugaku Zasshi 45: 159–162.Google Scholar
  74. Osawa, T., Kumon, H., Reece, C.A., and Shibamoto, T., 1991, Inhibitory effect of lichen constituents on mutagenicity induced by heterocyclic amines, Environ. Mol. Mutagen. 18: 35–40.PubMedCrossRefGoogle Scholar
  75. Parker, J.C., McPherson, R.K., Andrews, K.M., Levy, C.B., Dubins, J.S., Chin, J.E., Petry, P. V., Hulin, B., Perry, D.A., Inagaki, T., Dekker, K.A., Tachikawa, K., Sugie, Y., and Treadway, J.L., 2000, Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes, Diabetes 49: 2079–2086.PubMedCrossRefGoogle Scholar
  76. Peres, V., and Nagem, T.J., 1997, Trioxygenated naturally occurring xanthones, Phytochemistry 44: 191–214.CrossRefGoogle Scholar
  77. Peres, V., Nagem, T.J., de Oliveira, F. F. 2000. Tetraoxygenated naturally occurring xanthones, Phytochemistry 55: 683–710.PubMedCrossRefGoogle Scholar
  78. Peyronel, D., Dal Farra, D., and Mantelin, J., 2000, Sterol 3-sulfates, new active principles having cosmetic and dermatological use, Fr. Demande FR 2789312, pp. 14.Google Scholar
  79. Proksch, P., 1995, The protective system of lichens against being consumed by animals, Dtsch. Apoth. Ztg. 135: 21–24.Google Scholar
  80. Raju, K.R., Rao, A.V.N.A., and Rao, P.S., 1985, Leprapinic acid derivatives with antibacterial activity, Fitoterapia 56: 221–224.Google Scholar
  81. Rao, A.V.N., Appa, and Prabhakar, M.C., 1987, Pharmacological actions of leprapinic acid, a lichen metabolite, Fitoterapia 58: 221–228Google Scholar
  82. Richardson, D.H.S., 1988, Medicinal and other economic aspects of lichens, in: Handbook ofLichenology, Vol. 3, M. Galun, ed., CRC Press, Boca Raton, pp. 93–108.Google Scholar
  83. Rojas, I.S., Lotina-Hennsen, B., and Mata, R., 2000, Effect of lichen metabolites on thylakoid electron transport and photophosphorylation in isolated spinach chloroplasts, J. Nat. Prod. 63: 1396–1399.Google Scholar
  84. Romagni, J.G., Meazza, G., Nanayakkara, D., and Dayan, F.E., 2000, The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor ofplantp-hydroxyphenylpyruvate dioxygenase, FEBSLetters 480: 301–305.PubMedCrossRefGoogle Scholar
  85. Rosato, V.G., and Scutari, N.C., 2000, On the presence of Ramalina complanata (Ramalinaceae, lichenized Ascomycotina) and allied species in Argentina, Mycotaxon 74: 141–151.Google Scholar
  86. Rundel, P.W., 1969, Clinal variation in the production of usnic acid in Cladonia subtenuis, Bryologist 72: 40–44.Google Scholar
  87. Sanchez, M.-L., Bats, J.-P., and Moulines, J., 1997, Thermal hydrolysis of the main depsides and depsidones contained in the lichens used in perfumery, Riv. Ital. EPPOS, 100–104.Google Scholar
  88. Saklani, A., and Upreti, D.K., 1992, Folk uses of some lichens in Sikkim, J. Ethnopharm. 37: 229–233.CrossRefGoogle Scholar
  89. Sawada, S., Mori, H., Sawanakunanont, Y., Nishida, R., Yamamoto, Y., and Hosokawa, T., 2000, Polysubstituted polyphenols of cajuput tree leaf and their anti-proliferative activity to cultured mouse t-lymphoma cells, EL4, Bull. Kyoto Univ. Educ., Ser. B 95 /96: 1–9.Google Scholar
  90. Schreiber, K., 1975, Plant growth inhibitors of plant origin, Ger. Environ. Qual. Saf., Suppl. 3: 483–485.Google Scholar
  91. Schulz, H., and Albroscheit, G., 1989, Characterization of oakmoss products used in perfumery by high-performance liquid chromatography, J. Chromatogr. 466: 301–306.CrossRefGoogle Scholar
  92. Seifert, P., and Bertrand, C., 1995, Usnic acid: a natural preservative from lichens, Cosmet. News 18: 169–172.Google Scholar
  93. Silverman, R. B., Ding, C.Z., and Gates, K. S., 1993, Design and mechanism of monoamine oxidase inactivators from an organic chemical perspective, in: Perspectives in Medicinal Chemistry, B. Testa, E. Kyburz, W. Fuhrer, and R. Giger, eds, Verlag Helvetica Chomica Acta, Basel, Weinheim, New York, Basel, Cambridge.Google Scholar
  94. Slansky, F., 1979, Effect of lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera ornithogalli, Env. Entomol. 8: 865–868.Google Scholar
  95. Solhaug, K.A., and Gauslaa, Y., 1996, Parietin, a photoprotective secondary product of the lichen Xanthoria parietina, Oecologia 108: 412–418.CrossRefGoogle Scholar
  96. Su, H.-Y., Chemg, S.-H., Chen, C.-C., and Lee, H., 1995, Emodin inhibits the mutagenicity and DNA adducts induced by 1-nitropyrene, Mutat. Res. 329: 205–212.PubMedCrossRefGoogle Scholar
  97. Sun, H., Niu, F., Lin, Z., Cao, D., Li, B., and Wu, J., 1990, Chemical constituents of four medicinal lichens, Zhiwu Xuebao 32: 783–788.Google Scholar
  98. Szerdahelyi, R., Balla, J., and Kerenyi, I., 1982, Study of the sorption of drugs by plastics, Hung. Acta Pharm. Hung. 52: 15–21.Google Scholar
  99. Taguchi, H., Sankawa, U., and Shibata, S., 1969, Biosynthesis of natural products. VII. Biosynthesis of usnic acid in lichens, Chem. Pharm. Bull. 17: 2061–2064.PubMedCrossRefGoogle Scholar
  100. Taylor, F.J.R., 1987, An overview of the status of evolutionary cell symbiosis theories, in: Endocytobiology, Vol. 3, J.L. Lee and J.F. Fredrick, eds., New York, Academy of Sciences.Google Scholar
  101. Tehler, A., 1994, Cladistic analysis in ascomycete systematics: theory and practice, in: First International Workshop on Ascomycete Systematics, D.L. Hawksworth, ed., Plenum Press, London.Google Scholar
  102. Tehler, A., 1996, Systematics, phylogeny and classification, in: Lichen Biology, T.H. Nash III, ed., Cambridge University Press, Cambridge.Google Scholar
  103. Trinkaus, U., and Mayrhofer, H., 2000, Revision of the Buellia epidaea group (Lichenized Ascomycetes, Physciaceae). 1. Species of the northern hemisphere, Nova Hedwigia 71: 271–314.Google Scholar
  104. Turner, N.J., 1977, Economic importance of black tree lichen (Bryoria fremontii) to the Indians of western North America, Econ. Bot. 31: 461–470.CrossRefGoogle Scholar
  105. Weniger, B., Haag-Berrurier, M., and Anton, R., 1982, Plants of Haïti used as antifertility agents, J. Ethnopharmacol. 6: 67–84.PubMedCrossRefGoogle Scholar
  106. West, R.R., Labroo, V., Piggott, J.R., Smith, R.A., and McKernan, P.A., 1994, Use of skyrin and analogs for the treatment of diabetes mellitus and process for their preparation, PCT Int. Appl. WO 9414427, pp. 35.Google Scholar
  107. Wirth, V., 1987, Die Flechten Baden-Wurtembergs, Verbreitungsatlas Stuttgart, Eugen Ulmer GmbH.Google Scholar
  108. Wu, J.X., Xu, J.Y., and Yuan, Y.Z., 2000, Effect of emodin and sandostatin on metabolism of eicosanoids in acute necrotizing pancreatitis, World J. Gastroenterol. 6: 293–294.PubMedGoogle Scholar
  109. Yamamoto, Y., Miura, Y., Kinoshita, Y., Higuchi, M., Yamada, Y., Murakami, A., Ohigashi, H., and Koshimizu, K., 1995, Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation, Chem. Pharm. Bull. 43: 1388–1390.PubMedCrossRefGoogle Scholar
  110. Yamazaki, M., Satoh, Y., Maebayashi, Y., and Horie, Y., 1988, Monoamine oxidase inhibitors from a fungus, Emericella navahoensis, Chem. Pharm. Bull. 36: 670–675.PubMedCrossRefGoogle Scholar
  111. Mang, L., Lau, Y.-K., Xia, W., Hortobagyi, G. N., and Hung, M.-C., 1999, Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel, Clin. Cancer Res. 5: 343–353.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Joanne G. Romagni
    • 1
  • Franck E. Dayan
    • 2
  1. 1.University of St. ThomasHoustonUSA
  2. 2.Natural Products Utilization Research UnitUSDA-ARSUniversityUSA

Personalised recommendations