Insect Pest Resistant Transgenic Crops

  • P. Ananda Kumar


Insect pests are the major scourge of agriculture down the ages. It is estimated that 14% of crop productivity is lost to insect pests on a global scale (Krattiger, 1997). Agronomically important crops and their high-yielding genotypes are highly susceptible to insect pests. Introduction of chemical pesticides has brought about a significant change in the pest management practices but, unfortunately, resulted in adverse effects on human health, other biological organisms and environment. Figure 1 depicts the amount of money spent annually on pesticides on the global scale. Although complete elimination of pesticides is neither feasible nor advisable, it is imperative to reduce drastically the consumption of pesticides in agriculture and environment for practising safe and sustainable farming. Effective alternatives are now available in the form of genetically engineered crops resistant to insect pests that can be integrated in agricultural ecosystems (Schuler et al., 1998). Many insecticidal proteins are available in nature which are highly specific to agronomically important insect pests but at the same time harmless to man, mammals and other organisms including beneficial insects. These proteins can be expressed in plant systems in sufficient quantities so as to confer insect resistance.


Transgenic Plant Codon Usage Bacillus Thuringiensis Colorado Potato Beetle Insect Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alstad, D. N., and Andow, D. A., 1995, Managing the evolution of insect resistance to transgenic plants, Science 268: 1894–1896.PubMedCrossRefGoogle Scholar
  2. Arpaia, S., Chiriatti, K., and Gioro, G, 1998, Predicting the adaptation of Colorado potato beetle to transgenic eggplants expressing CryI1I toxin: the role of gene dominance, migration and fitness cost, J. Econ. Entomol. 91: 21–29.Google Scholar
  3. Barton, K. A., Whiteley, H. R., and Yang, N. S., 1987, Bacillus thuringiensis 8-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects, Plant Physiol. 85: 1103–1109.Google Scholar
  4. Bravo, A., Jansens, S., and Peferoen, M., 1992, Immunocytochemical localization of Bacillus thuringiensis crystal proteins in toxicated insects, J. Invert. Pathol. 60: 237–246.CrossRefGoogle Scholar
  5. Cao, J., Tang, J. D., Strizhov, N., Shelton, A. M., and Earle, E. D., 1999, Transgenic broccoli with high levels of Bacillus thuringiensis Cry IA or Cry 1C protein control diamondback moth larvae resistant to Cry IA or Cry1C, Mol. Breed. 5: 131–141.CrossRefGoogle Scholar
  6. Caprio, M. A., 1998, Evaluating resistance management strategies for multiple toxins in the presence of external refuges, J. Econ. Entomol. 91: 1021–1031.Google Scholar
  7. Carozzi, N. B., Warren, G. W., Desai, N., Jayne, S. M., Lotstein, R., Rice, D. A., Evola, S., and Koziel, M. G., 1992, Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco, Plant. Mol. Biol. 20: 53 8–539.Google Scholar
  8. Chakrabarti, S.K., Mandaokar, A., Pattanayak, D., Shukla, A., Naik, P.S., Sharma, R.P., and Kumar, P.A., 2000, Bacillus thuringiensis crylAb gene confers resistance to potato against Helicoverpa armigera Hubner, Potato Res. 42: 227–238.Google Scholar
  9. De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H., 2001, Over expression of the Bt cry2Aa2 operan in chloroplasts leads to formation of insecticidal crystals, Nature Biotechnol. 19: 71 74.Google Scholar
  10. De Maagd, R.A., Bosch, D., and Stiekema, W., 1999, Bacillus thuringiensis toxin-mediated insect resistance in plants, Trends Plant Sci. 4; 9–13.CrossRefGoogle Scholar
  11. De Maagd, R.A., Bravo, A., and Crickmore, N., 2001, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world, Trends Genet. 17: 193–199.PubMedCrossRefGoogle Scholar
  12. Federici, B. A., and Bauer, L. S., 1998, CytlAa protein of Bacillus thuringiensis is toxic to the cotton-wood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa, Appl. Environ. Microbial. 64: 4368–4371.Google Scholar
  13. Ferre, J., Real, M. D., van Rie, J., Jansens, S., and Peferoen, M., 1991, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor, Proc. Natl. Acad Sci. USA 88: 5119–5123.PubMedCrossRefGoogle Scholar
  14. Fischhof, D. A., Bowdisch, K.S., Perlak F. J., Marron, P.G., McCormick, S. H., Niedermeyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T., 1987, Insect tolerant transgenic tomato plants, Bio/Technol. 5: 807–813.CrossRefGoogle Scholar
  15. Forcada, C., Alacer, E., Garcera, M. D., and Martinez, R., 1996, Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins, Arch. Insect Biochem. Physiol. 31: 257–272.CrossRefGoogle Scholar
  16. Fox, J. L., 1998, Science panel urges EPA to mandate Bt resistance management, ASMNews. 64: 379–380.Google Scholar
  17. Frutos, R., Rang, C., and Royer, M., 1999, Managing insect resistance to plants producing Bacillus thuringiensis toxins, Crit. Rev. Biotech. 19: 227–276.CrossRefGoogle Scholar
  18. Gould, F., 1994, Potential and problems with high-dose strategies for pesticidal engineered crops, Biocontrol Sci. Technol. 4: 451–461.CrossRefGoogle Scholar
  19. Gould, F., 1998, Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology, Annu. Rev. Entomol. 43: 701–726.PubMedCrossRefGoogle Scholar
  20. Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F. J., and Moar, W. J., 1992, Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens, Proc. Natl. Acad. Sci. USA 89: 7986–7990.PubMedCrossRefGoogle Scholar
  21. Ives, A. R., 1996, Evolution of insect resistaace to Bacillus thuringiensis-transformed plants, Science 273: 1412–1413.CrossRefGoogle Scholar
  22. Jansens, S., van Vliet, A., Dickburt, C., Buysse, L., Piens, C., Saey, B., De Wulf, A., Gossele, V., Paez, A., Gobel, E., and Peferoen, M., 1997. Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage, Crop Sci.37: 1616–1624.Google Scholar
  23. Jouanin, L., Bottino, M. B., Girard, C., Morrot, G., and Giband, M., 1998, Transgenic plants for insect resistance, Plant Sci. 131: 1–11.CrossRefGoogle Scholar
  24. Kennedy, G. G., and Whalon, M. E., 1995, Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation, J. Econ. Entomol. 88: 454–460.Google Scholar
  25. Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., and Evola, S. V., 1993, Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Bio/Technol. 11: 194–200.CrossRefGoogle Scholar
  26. Krattiger, A. F., 1997, Insect resistance in crops: A case study of Bacillus thuringiensis and its transfer to developing countries, ISAAA Briefs 2: 1–42.Google Scholar
  27. Kumar, P.A., Sharma, R.P., and Malik, V.S., 1996, Insecticidal proteins ofBacillus thuringiensis, Adv. Appl. Microbiol. 42: 1–43.PubMedCrossRefGoogle Scholar
  28. Kumar, P.A., Mandaokar, A., Sreenivasu, K., Chakrabarti, S.K., Sharma, S.R., Bisaria, S., Kaur, S., and Sharma, R.P., 1998, Insect resistant transgenic brinjal plants, Mol. Breed. 4: 33–37.CrossRefGoogle Scholar
  29. Leroy, T., Henry, A. M., Royer, M., Altosaar, 1., Frutos, R., Duris, D., and Philippe, R., 2000, Genetically modified coffee plants expressing the Bacillus thuringiensis crylAc gene for resistance to leaf miner, Plant Cell Rep. 19: 382–389.Google Scholar
  30. Liu, Y. B., and Tabashnik, B. E., 1997, Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis, Proc. R. Soc. Load. 264: 605–610.CrossRefGoogle Scholar
  31. Liu, Y. B., Tabashnik, B. E., and Pusztai-Carey, M., 1996, Field-evolved resistance to Bacillus thuringiensis toxin Cryl C in diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol. 89: 798–804.Google Scholar
  32. Macintosh, S. C., Kishore, G. M., Perlak, F. J., Marron, P. G., Stone, T. B., Sims, S. R., and Fuchs, R. L., 1990, Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors, J. Agric. Food Chem. 38: 1145–1152.CrossRefGoogle Scholar
  33. Mandaokar, A., Goyal, R.K., Shukla, A., Bhalla, R., Chaurasia, A., Reddy, V.S., Altosaar, 1., Sharma, R.P., and Kumar, P.A., 2000, Transgenic tomato plants resistant to fruitborer (Helicoverpa armigera Hubner), Crop Protect. 19: 307–312.CrossRefGoogle Scholar
  34. Maqbool, S.B., Husnain, T., Riazuddin, S., Massom, L., and Chritou, P., 1998, Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M 7 using the novel 8-endotoxin cry2A Bacillus thuringiensis gene, Mol. Breed. 4: 501–507.CrossRefGoogle Scholar
  35. McBride, K.E., Svab, Z., Schaaf, D.J., Hogan, P.S., Stalker, D.M., and Maliga, P., 1995, Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein tobacco, Biotechnol. 13: 362–365.CrossRefGoogle Scholar
  36. Meade, T., and Hare, J. D., 1995, Integration of host plant resistance and Bacillus thuringiensis insecticides in the management of lepidopterous pests of celery, J. Econ. Entomol. 88: 1787–1794.Google Scholar
  37. Metz, T. D., Roush, R. T., Tang, J. D., Shelton, A. M., and Earle, E. D., 1995, Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies, Mol. Breed 1: 309–317.CrossRefGoogle Scholar
  38. Moellenbeck, D. J., Peters, M. L., Bing, J. W., Rouse, J. R., Higgins, L. S., Sims, L., Nevshemal, T., Marshall, L., Ellis, R. T., Bystrak, P. G., Lang, B. A., Stewart, J. L., Kouba, K., Sondag, V., Gustafson, V., Nour, K., Xu, D., Swenson, J., Zhang, J., Czapla, T., Schwab, G., Jayne, S., Stockhoff, B. A., Narva, K., Schnepf, H. E., Stelman, S. J., Poutre, C., Koziel, M., and Duck, N., 2001, Insecticidal proteins from Bacillus thuringiensis protect corn from corn root worms, Nature Biotechnol. 19: 668–672.CrossRefGoogle Scholar
  39. Murray, E. E., Rocheleau, T., Eberle, M., Stock, C., Sekar, V., and Adang, M., 1991, Analysis of unstable RNA transcripts of insecticidal crystal protein genes of in transgenic plants and electroporated protoplasts, Plant Mol. Biol. 16: 1035–1050.PubMedCrossRefGoogle Scholar
  40. Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N.A., Ghosh, M., and Sen, S.K., 1997, Transgenic elite indica rice plants expressing CrylAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stemborer, Proc. Natl. Acad. Sci. USA 94: 2111–2116.PubMedCrossRefGoogle Scholar
  41. Onstad, D. W., and Gould, F., 1998, Do dynamics of crop maturation and herbivorous insect life cycle influence the risk of adaptation to toxins in transgenic host plants? Environ. Entomol. 27: 517–522.Google Scholar
  42. Oppert, B., Kramer, K. J., Johnson, D. E., Maclnstosh, S. C., and McGaughey, W. H., 1994, Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella, Biochem. Biophys. Res. Commun. 198: 940–947.PubMedCrossRefGoogle Scholar
  43. Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D., and McGaughey, W. H., 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem. 272: 23473–23476.PubMedCrossRefGoogle Scholar
  44. Pattanayak, D., and Kumar, P. A., 2000, Plant biotechnology: Current advances and future perspectives, Proc. Indian Natl. Sci. Acad. B6: 265–310.Google Scholar
  45. Peferoen, M., 1997, Progress and prospects for field use of Bt genes in crops, Trends Biotechnol. 15: 173–177CrossRefGoogle Scholar
  46. Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A., 1990, Insect resistant cotton plants, Bio/Technol. 8: 939–943.CrossRefGoogle Scholar
  47. Perlak, F.J, Fuchs, R.L., Dean, D.A., McPherson, S., and Fischhoff, D.A., 1991, Modification of the coding sequence enhances plant expression of insect control genes, Proc. Natl. Acad. Sci. USA 88: 3324–3328.PubMedCrossRefGoogle Scholar
  48. Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., and Fishhoff, D. A., 1993, Genetically improved potatoes: protection from damage by Colorado potato beetles, Plant Mol. Biol. 22: 313–321.PubMedCrossRefGoogle Scholar
  49. Raina, S.K., and Khanna, H., 2002, Elite indica transgenic rice plants expressing CrylAc endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer, Transgenic Res (In press).Google Scholar
  50. Roush, R. T., 1997, Managing risk of resistance in pests to insect-tolerant transgenic crops, in: Commercialization of transgenic crops: Risks, Benefits and Trade Considerations, P.M. Waterhouse, G. Evans and M.J. Gibbs, eds., Cooperative Research Center for Plant Science and Bureau of Statistics, Canberra, Australia, pp. 259–271.Google Scholar
  51. Roush, R.T., 1989, Designing resistance management programs. How can you choose? Pestic. Sci. 26: 423–441CrossRefGoogle Scholar
  52. Roush, R.T., 1998, Two-toxin strategies for management of insecticidal transgenic crops, Can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond 353: 1777–1786.CrossRefGoogle Scholar
  53. Schuler, T.H., Poppy, G.M., and Denholm, 1., 1998, Insect-resistant transgenic plants, Trends Biotech. 16: 168–175CrossRefGoogle Scholar
  54. Shelton. A.M., Juliet D., Tang, J.D., Roush, R.T., Metz, T.D., and Earle, E.D., 2000, Field tests on managing resistance to Bt-engineered plants, Nature Biotech. 18: 339–342.CrossRefGoogle Scholar
  55. Shu, Q., Ye, G., Cui, H., Cheng, X., Xiang, Y., Wu, D., Gao, M., Xia, Y., Hu, C., Sardana, R., and Altosaar, I., 2000, Transgenic rice plants with a synthetic crylAb gene from Bacillus thuringiensis were highly resistant to eight lepidopteran pests, Mol. Breed. 6: 433–439.CrossRefGoogle Scholar
  56. Singsit, C., Adang, M. J., Lynch, R. E., Anderson, W. F., Wang, A., Cardineau, G., and Ozias-Akins, P., 1997, Expression of a Bacillus thuringiensis crylA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer, Transgenic Res. 6: 169–176.PubMedCrossRefGoogle Scholar
  57. Stewart, C. N., Jr., Adang, M. J., All, J. N., Raymer, P. L., Ramachandran, S., and Parrott, W. A., 1996, Insect control and dosage effects in transgenic Canola containing a synthetic Bacillus thuringiensis crylAc gene, Plant Physiol. 112: 115–120.CrossRefGoogle Scholar
  58. Strizhov, N., Keller, M., Mathur, J., Koncz-Kalman, Z., Bosch, D., Prudovsky, E., Schell, J., Sneh, B., Koncz, C., and Zilberstein, A., 1996, A synthetic cry1C gene, encoding a Bacillus thuringiensis ä-endotoxin, confers Spodoptera resistance in alfalafa and tobacco, Proc. Natl. Acad. Sci. USA. 93: 15012–15017.PubMedCrossRefGoogle Scholar
  59. Tabashnik, B.E., 1994, Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 39: 47–79.CrossRefGoogle Scholar
  60. Tabashnik, B. E., 1998, Transgenic crops for the pacific basin: prospects and problems, in: Proceedings of the Australian Applied Entomology Research Conference, Vol. 1, University of Queensland, Australia, pp. 161–161.Google Scholar
  61. Tang, J. D., Shelton, A. M, van Rie, J., de Roeck, S., Moar, W. J., Roush, R. T., and Peferoen, M., 1996, Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella), Appl. Environ. Microbiol. 62: 564–569.PubMedGoogle Scholar
  62. Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beukeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987, Transgenic plants protected from insect attack, Nature 328: 33–37.CrossRefGoogle Scholar
  63. van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W. J., and Visser, B., 1994, Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1A(b) and cry1C genes: a resistance management strategy, Plant Mol. Biol. 26: 51–59.PubMedCrossRefGoogle Scholar
  64. Wirth, M. C., Georghiou, G. P., and Federici, B. A. 1997, CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of Cry IV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad. Sci. USA 94: 10536–10540.PubMedCrossRefGoogle Scholar
  65. Wong, E. Y., Hironaka, C. M., and Fischhoff, D. A., 1992, Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants, Plant Mol. Biol. 20: 81–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • P. Ananda Kumar
    • 1
  1. 1.National Research Center for Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations