Skip to main content

Abstract

Insect pests are the major scourge of agriculture down the ages. It is estimated that 14% of crop productivity is lost to insect pests on a global scale (Krattiger, 1997). Agronomically important crops and their high-yielding genotypes are highly susceptible to insect pests. Introduction of chemical pesticides has brought about a significant change in the pest management practices but, unfortunately, resulted in adverse effects on human health, other biological organisms and environment. Figure 1 depicts the amount of money spent annually on pesticides on the global scale. Although complete elimination of pesticides is neither feasible nor advisable, it is imperative to reduce drastically the consumption of pesticides in agriculture and environment for practising safe and sustainable farming. Effective alternatives are now available in the form of genetically engineered crops resistant to insect pests that can be integrated in agricultural ecosystems (Schuler et al., 1998). Many insecticidal proteins are available in nature which are highly specific to agronomically important insect pests but at the same time harmless to man, mammals and other organisms including beneficial insects. These proteins can be expressed in plant systems in sufficient quantities so as to confer insect resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alstad, D. N., and Andow, D. A., 1995, Managing the evolution of insect resistance to transgenic plants, Science 268: 1894–1896.

    Article  PubMed  CAS  Google Scholar 

  • Arpaia, S., Chiriatti, K., and Gioro, G, 1998, Predicting the adaptation of Colorado potato beetle to transgenic eggplants expressing CryI1I toxin: the role of gene dominance, migration and fitness cost, J. Econ. Entomol. 91: 21–29.

    CAS  Google Scholar 

  • Barton, K. A., Whiteley, H. R., and Yang, N. S., 1987, Bacillus thuringiensis 8-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects, Plant Physiol. 85: 1103–1109.

    CAS  Google Scholar 

  • Bravo, A., Jansens, S., and Peferoen, M., 1992, Immunocytochemical localization of Bacillus thuringiensis crystal proteins in toxicated insects, J. Invert. Pathol. 60: 237–246.

    Article  CAS  Google Scholar 

  • Cao, J., Tang, J. D., Strizhov, N., Shelton, A. M., and Earle, E. D., 1999, Transgenic broccoli with high levels of Bacillus thuringiensis Cry IA or Cry 1C protein control diamondback moth larvae resistant to Cry IA or Cry1C, Mol. Breed. 5: 131–141.

    Article  CAS  Google Scholar 

  • Caprio, M. A., 1998, Evaluating resistance management strategies for multiple toxins in the presence of external refuges, J. Econ. Entomol. 91: 1021–1031.

    Google Scholar 

  • Carozzi, N. B., Warren, G. W., Desai, N., Jayne, S. M., Lotstein, R., Rice, D. A., Evola, S., and Koziel, M. G., 1992, Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco, Plant. Mol. Biol. 20: 53 8–539.

    Google Scholar 

  • Chakrabarti, S.K., Mandaokar, A., Pattanayak, D., Shukla, A., Naik, P.S., Sharma, R.P., and Kumar, P.A., 2000, Bacillus thuringiensis crylAb gene confers resistance to potato against Helicoverpa armigera Hubner, Potato Res. 42: 227–238.

    Google Scholar 

  • De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H., 2001, Over expression of the Bt cry2Aa2 operan in chloroplasts leads to formation of insecticidal crystals, Nature Biotechnol. 19: 71 74.

    Google Scholar 

  • De Maagd, R.A., Bosch, D., and Stiekema, W., 1999, Bacillus thuringiensis toxin-mediated insect resistance in plants, Trends Plant Sci. 4; 9–13.

    Article  Google Scholar 

  • De Maagd, R.A., Bravo, A., and Crickmore, N., 2001, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world, Trends Genet. 17: 193–199.

    Article  PubMed  Google Scholar 

  • Federici, B. A., and Bauer, L. S., 1998, CytlAa protein of Bacillus thuringiensis is toxic to the cotton-wood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa, Appl. Environ. Microbial. 64: 4368–4371.

    CAS  Google Scholar 

  • Ferre, J., Real, M. D., van Rie, J., Jansens, S., and Peferoen, M., 1991, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor, Proc. Natl. Acad Sci. USA 88: 5119–5123.

    Article  PubMed  CAS  Google Scholar 

  • Fischhof, D. A., Bowdisch, K.S., Perlak F. J., Marron, P.G., McCormick, S. H., Niedermeyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T., 1987, Insect tolerant transgenic tomato plants, Bio/Technol. 5: 807–813.

    Article  Google Scholar 

  • Forcada, C., Alacer, E., Garcera, M. D., and Martinez, R., 1996, Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins, Arch. Insect Biochem. Physiol. 31: 257–272.

    Article  CAS  Google Scholar 

  • Fox, J. L., 1998, Science panel urges EPA to mandate Bt resistance management, ASMNews. 64: 379–380.

    Google Scholar 

  • Frutos, R., Rang, C., and Royer, M., 1999, Managing insect resistance to plants producing Bacillus thuringiensis toxins, Crit. Rev. Biotech. 19: 227–276.

    Article  CAS  Google Scholar 

  • Gould, F., 1994, Potential and problems with high-dose strategies for pesticidal engineered crops, Biocontrol Sci. Technol. 4: 451–461.

    Article  Google Scholar 

  • Gould, F., 1998, Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology, Annu. Rev. Entomol. 43: 701–726.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F. J., and Moar, W. J., 1992, Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens, Proc. Natl. Acad. Sci. USA 89: 7986–7990.

    Article  PubMed  CAS  Google Scholar 

  • Ives, A. R., 1996, Evolution of insect resistaace to Bacillus thuringiensis-transformed plants, Science 273: 1412–1413.

    Article  Google Scholar 

  • Jansens, S., van Vliet, A., Dickburt, C., Buysse, L., Piens, C., Saey, B., De Wulf, A., Gossele, V., Paez, A., Gobel, E., and Peferoen, M., 1997. Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage, Crop Sci.37: 1616–1624.

    Google Scholar 

  • Jouanin, L., Bottino, M. B., Girard, C., Morrot, G., and Giband, M., 1998, Transgenic plants for insect resistance, Plant Sci. 131: 1–11.

    Article  CAS  Google Scholar 

  • Kennedy, G. G., and Whalon, M. E., 1995, Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation, J. Econ. Entomol. 88: 454–460.

    Google Scholar 

  • Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., and Evola, S. V., 1993, Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Bio/Technol. 11: 194–200.

    Article  CAS  Google Scholar 

  • Krattiger, A. F., 1997, Insect resistance in crops: A case study of Bacillus thuringiensis and its transfer to developing countries, ISAAA Briefs 2: 1–42.

    Google Scholar 

  • Kumar, P.A., Sharma, R.P., and Malik, V.S., 1996, Insecticidal proteins ofBacillus thuringiensis, Adv. Appl. Microbiol. 42: 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P.A., Mandaokar, A., Sreenivasu, K., Chakrabarti, S.K., Sharma, S.R., Bisaria, S., Kaur, S., and Sharma, R.P., 1998, Insect resistant transgenic brinjal plants, Mol. Breed. 4: 33–37.

    Article  CAS  Google Scholar 

  • Leroy, T., Henry, A. M., Royer, M., Altosaar, 1., Frutos, R., Duris, D., and Philippe, R., 2000, Genetically modified coffee plants expressing the Bacillus thuringiensis crylAc gene for resistance to leaf miner, Plant Cell Rep. 19: 382–389.

    CAS  Google Scholar 

  • Liu, Y. B., and Tabashnik, B. E., 1997, Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis, Proc. R. Soc. Load. 264: 605–610.

    Article  Google Scholar 

  • Liu, Y. B., Tabashnik, B. E., and Pusztai-Carey, M., 1996, Field-evolved resistance to Bacillus thuringiensis toxin Cryl C in diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol. 89: 798–804.

    CAS  Google Scholar 

  • Macintosh, S. C., Kishore, G. M., Perlak, F. J., Marron, P. G., Stone, T. B., Sims, S. R., and Fuchs, R. L., 1990, Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors, J. Agric. Food Chem. 38: 1145–1152.

    Article  CAS  Google Scholar 

  • Mandaokar, A., Goyal, R.K., Shukla, A., Bhalla, R., Chaurasia, A., Reddy, V.S., Altosaar, 1., Sharma, R.P., and Kumar, P.A., 2000, Transgenic tomato plants resistant to fruitborer (Helicoverpa armigera Hubner), Crop Protect. 19: 307–312.

    Article  CAS  Google Scholar 

  • Maqbool, S.B., Husnain, T., Riazuddin, S., Massom, L., and Chritou, P., 1998, Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M 7 using the novel 8-endotoxin cry2A Bacillus thuringiensis gene, Mol. Breed. 4: 501–507.

    Article  CAS  Google Scholar 

  • McBride, K.E., Svab, Z., Schaaf, D.J., Hogan, P.S., Stalker, D.M., and Maliga, P., 1995, Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein tobacco, Biotechnol. 13: 362–365.

    Article  CAS  Google Scholar 

  • Meade, T., and Hare, J. D., 1995, Integration of host plant resistance and Bacillus thuringiensis insecticides in the management of lepidopterous pests of celery, J. Econ. Entomol. 88: 1787–1794.

    Google Scholar 

  • Metz, T. D., Roush, R. T., Tang, J. D., Shelton, A. M., and Earle, E. D., 1995, Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies, Mol. Breed 1: 309–317.

    Article  CAS  Google Scholar 

  • Moellenbeck, D. J., Peters, M. L., Bing, J. W., Rouse, J. R., Higgins, L. S., Sims, L., Nevshemal, T., Marshall, L., Ellis, R. T., Bystrak, P. G., Lang, B. A., Stewart, J. L., Kouba, K., Sondag, V., Gustafson, V., Nour, K., Xu, D., Swenson, J., Zhang, J., Czapla, T., Schwab, G., Jayne, S., Stockhoff, B. A., Narva, K., Schnepf, H. E., Stelman, S. J., Poutre, C., Koziel, M., and Duck, N., 2001, Insecticidal proteins from Bacillus thuringiensis protect corn from corn root worms, Nature Biotechnol. 19: 668–672.

    Article  CAS  Google Scholar 

  • Murray, E. E., Rocheleau, T., Eberle, M., Stock, C., Sekar, V., and Adang, M., 1991, Analysis of unstable RNA transcripts of insecticidal crystal protein genes of in transgenic plants and electroporated protoplasts, Plant Mol. Biol. 16: 1035–1050.

    Article  PubMed  CAS  Google Scholar 

  • Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N.A., Ghosh, M., and Sen, S.K., 1997, Transgenic elite indica rice plants expressing CrylAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stemborer, Proc. Natl. Acad. Sci. USA 94: 2111–2116.

    Article  PubMed  CAS  Google Scholar 

  • Onstad, D. W., and Gould, F., 1998, Do dynamics of crop maturation and herbivorous insect life cycle influence the risk of adaptation to toxins in transgenic host plants? Environ. Entomol. 27: 517–522.

    Google Scholar 

  • Oppert, B., Kramer, K. J., Johnson, D. E., Maclnstosh, S. C., and McGaughey, W. H., 1994, Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella, Biochem. Biophys. Res. Commun. 198: 940–947.

    Article  PubMed  CAS  Google Scholar 

  • Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D., and McGaughey, W. H., 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem. 272: 23473–23476.

    Article  PubMed  CAS  Google Scholar 

  • Pattanayak, D., and Kumar, P. A., 2000, Plant biotechnology: Current advances and future perspectives, Proc. Indian Natl. Sci. Acad. B6: 265–310.

    Google Scholar 

  • Peferoen, M., 1997, Progress and prospects for field use of Bt genes in crops, Trends Biotechnol. 15: 173–177

    Article  CAS  Google Scholar 

  • Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A., 1990, Insect resistant cotton plants, Bio/Technol. 8: 939–943.

    Article  CAS  Google Scholar 

  • Perlak, F.J, Fuchs, R.L., Dean, D.A., McPherson, S., and Fischhoff, D.A., 1991, Modification of the coding sequence enhances plant expression of insect control genes, Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    Article  PubMed  CAS  Google Scholar 

  • Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., and Fishhoff, D. A., 1993, Genetically improved potatoes: protection from damage by Colorado potato beetles, Plant Mol. Biol. 22: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Raina, S.K., and Khanna, H., 2002, Elite indica transgenic rice plants expressing CrylAc endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer, Transgenic Res (In press).

    Google Scholar 

  • Roush, R. T., 1997, Managing risk of resistance in pests to insect-tolerant transgenic crops, in: Commercialization of transgenic crops: Risks, Benefits and Trade Considerations, P.M. Waterhouse, G. Evans and M.J. Gibbs, eds., Cooperative Research Center for Plant Science and Bureau of Statistics, Canberra, Australia, pp. 259–271.

    Google Scholar 

  • Roush, R.T., 1989, Designing resistance management programs. How can you choose? Pestic. Sci. 26: 423–441

    Article  CAS  Google Scholar 

  • Roush, R.T., 1998, Two-toxin strategies for management of insecticidal transgenic crops, Can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond 353: 1777–1786.

    Article  CAS  Google Scholar 

  • Schuler, T.H., Poppy, G.M., and Denholm, 1., 1998, Insect-resistant transgenic plants, Trends Biotech. 16: 168–175

    Article  CAS  Google Scholar 

  • Shelton. A.M., Juliet D., Tang, J.D., Roush, R.T., Metz, T.D., and Earle, E.D., 2000, Field tests on managing resistance to Bt-engineered plants, Nature Biotech. 18: 339–342.

    Article  CAS  Google Scholar 

  • Shu, Q., Ye, G., Cui, H., Cheng, X., Xiang, Y., Wu, D., Gao, M., Xia, Y., Hu, C., Sardana, R., and Altosaar, I., 2000, Transgenic rice plants with a synthetic crylAb gene from Bacillus thuringiensis were highly resistant to eight lepidopteran pests, Mol. Breed. 6: 433–439.

    Article  CAS  Google Scholar 

  • Singsit, C., Adang, M. J., Lynch, R. E., Anderson, W. F., Wang, A., Cardineau, G., and Ozias-Akins, P., 1997, Expression of a Bacillus thuringiensis crylA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer, Transgenic Res. 6: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, C. N., Jr., Adang, M. J., All, J. N., Raymer, P. L., Ramachandran, S., and Parrott, W. A., 1996, Insect control and dosage effects in transgenic Canola containing a synthetic Bacillus thuringiensis crylAc gene, Plant Physiol. 112: 115–120.

    Article  CAS  Google Scholar 

  • Strizhov, N., Keller, M., Mathur, J., Koncz-Kalman, Z., Bosch, D., Prudovsky, E., Schell, J., Sneh, B., Koncz, C., and Zilberstein, A., 1996, A synthetic cry1C gene, encoding a Bacillus thuringiensis ä-endotoxin, confers Spodoptera resistance in alfalafa and tobacco, Proc. Natl. Acad. Sci. USA. 93: 15012–15017.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B.E., 1994, Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 39: 47–79.

    Article  Google Scholar 

  • Tabashnik, B. E., 1998, Transgenic crops for the pacific basin: prospects and problems, in: Proceedings of the Australian Applied Entomology Research Conference, Vol. 1, University of Queensland, Australia, pp. 161–161.

    Google Scholar 

  • Tang, J. D., Shelton, A. M, van Rie, J., de Roeck, S., Moar, W. J., Roush, R. T., and Peferoen, M., 1996, Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella), Appl. Environ. Microbiol. 62: 564–569.

    PubMed  CAS  Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beukeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987, Transgenic plants protected from insect attack, Nature 328: 33–37.

    Article  CAS  Google Scholar 

  • van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W. J., and Visser, B., 1994, Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1A(b) and cry1C genes: a resistance management strategy, Plant Mol. Biol. 26: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, M. C., Georghiou, G. P., and Federici, B. A. 1997, CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of Cry IV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad. Sci. USA 94: 10536–10540.

    Article  PubMed  CAS  Google Scholar 

  • Wong, E. Y., Hironaka, C. M., and Fischhoff, D. A., 1992, Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants, Plant Mol. Biol. 20: 81–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, P.A. (2002). Insect Pest Resistant Transgenic Crops. In: Upadhyay, R.K. (eds) Advances in Microbial Control of Insect Pests. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4437-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4437-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3395-9

  • Online ISBN: 978-1-4757-4437-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics