Bacillus Sphaericus: Mechanism and Application as a Mosquito Larvicide

  • Zhiming Yuan
Chapter

Abstract

Bacillus sphaericus is a ubiquitous, cosmopolitan, aerobic and sporeforming bacterium, with a terminal swelled sporangium and spherical spore. All strains have been grouped into 49 serotypes on the basis of the flagella agglutination. Most strains are non-entomopathogenic with only nine serotypes (H1, H2, H3, H5, H6, H9, H25, H26 and H48) exhibiting toxicity against mosquito larvae. The toxic strains produce two kinds of toxins. One is a binary toxin, synthesized and assembled as the crystal forms during sporulation. This kind of toxin is composed of 42 and 51 kDa active peptides, and both fragments are required for toxicity. The other kinds of toxins are mosquitocidal toxins (Mtx), which are produced during bacteria vegetative growth. It has been shown that the highly toxic strains are very toxic against Culex spp. followed by Anopheles spp., but have no or low toxicity to Aedes spp. Strains of B. sphaericus offer distinct advantages compared to bacillus spp. Strains of B. sphaericus offer distinct advantages compared to Bacillus thuringiensis var. israelensis, having an increased duration of larvicidal activity against certain environments. In the last decades, B. sphaericus have been must successfully use as a larvicide in many parts of the World, and it is considered a promising agent for mosquito control, especially for Culex spp. in the suburbs of cities or small towns. This Chapter will focus on biological properties, host range and toxicity, mosquitocidal toxins and the encoding genes, genetically modification, production and field application of B. sphaericus, as well as the resistance problem in insects arose by the widely application of this bacterium.

Keywords

Bacillus Thuringiensis Mosquito Larva Larvicidal Activity Mosquito Control Toxin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adak, T., Mittal, P.K., and Raghavendra, K., 1995, Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823, Curr Science 69: 695–698.Google Scholar
  2. Ahmad, S., Selvapandiyan, A., and Bhatnagar, R.K., 1998, Increased toxicity of modified mosquitocidal binary toxins of Bacillus sphaericus expressed in Escherichia coli, Appl. Microbiol. Biotechnol. 49: 164–167.PubMedCrossRefGoogle Scholar
  3. Ahmed, H.K., Mitchell, W.J., and Priest, F.G.,1995, Regulation of mosquitocidal toxin synthesis in Bacillus sphaericus, Appl. Microbiol. Biotechnol. 43: 310–314.Google Scholar
  4. Alexander, B., and Priest, F.G., 1990, Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae, J. Gen. Microbiol. 136: 367–376PubMedCrossRefGoogle Scholar
  5. Ali, A., and Weaver, M.S., 1989, Cotsenmoyer E. Effectiveness of Bacillus thuringiensis serovar. israelensis (Vectobac 12 AS) and Bacillus sphaericus 2362 (ABG-6232) against Culex spp. mosquitoes in a dairy lagoon in central Florida, Florida Entomological Society 72: 585–591.CrossRefGoogle Scholar
  6. Ali, S.M., 1993, Effect of bacteriophage lysogeny on the efficacy of two bacterial larvicide formulations under field conditions, J Egyptian Society Parasitol. 23: 305–312.Google Scholar
  7. Angsuthanasombat, C., Crickmore, N., and Ellar, D.J., 1992, Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo, FEMS Microbiol. Lett. 73: 63–68.PubMedCrossRefGoogle Scholar
  8. Aquino de Maro, M., Mitchell, W.J., and Priest F.G., 1992, Differentiation of mosquito-pathogenic strains of Bacillus sphaericus from non-toxic varieties by ribosomal RNA gene restriction patterns, J Gen. Microbial. 138: 1159–1166.CrossRefGoogle Scholar
  9. Arapinis, C., de la Torre, F., and Szulmajster, J., 1988, Nucleotide and deduced amino acid sequence of the Bacillus sphaericus 1593M gene encoding a 51.4kDa polypeptide which acts synergistically with the 42D protein for expression of the larvicidal toxin, Nucleic Acids Res. 16: 7731–7737.PubMedCrossRefGoogle Scholar
  10. Arredondo-Jimnez, J.1., Lopez, T., Rodriguez, M.H., and Bown, D.N., 1990, Small scale field trials of Bacillus sphaericus (strain 2362) against Anopheline and Culicine mosquito larvae in Southern Mexico, J. Am. Mosq. Control Assoc. 6: 300–305.Google Scholar
  11. Baquerizo, E. Jousset, F.X., Abd-Alla, A.M., Cousserans F., and Bergoin, M, 2000, Genomic and transcriptional organization of cpDNV, a mosquito densovirus with an ambisense genome, Abstract ofXXXII1 Meeting of SIP, August 13–18, Guanajvato, Mexico.Google Scholar
  12. Bar, E., Sandler, N., Makayoto, M., and Keynan, A., 1998, Expression of chromosomally inserted Bacillus thuringiensis israelensis toxin gene in Bacillus sphaericus,. 1 Invertebr. Pathol. 72: 206–213.CrossRefGoogle Scholar
  13. Barbazan, P., Baldet, T., Darriet, F., Escaffre, H., Djoda, D.H., and Hougard, J.M., 1997, Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon, J. Am. Mosq. Control Assoc. 13: 263–269.PubMedGoogle Scholar
  14. Barbazan P., Baldet T., Darriet T., Escaffre H., Djoda D.H., and Hougard J.M., 1998, Impact of treatments with Bacillus sphaericus on Anopheles populations and the transmission of malaria in Maroua, a large city in a savannah region of Cameroon, J. Am. Mosq. Control Assoc. 14: 33–39.PubMedGoogle Scholar
  15. Barloy, F., Delecluse, A., Nicolas, L., and Lecadet, M.M. 1996, Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins, J. Bacterial. 178: 3099–3105.Google Scholar
  16. Barloy, F., Lecadet, M.M., and Delecluse, A., 1998, Cloning and sequencing of three new putative toxin genes from Clostridium bifermentants CH 18, Gene 211: 293–299.PubMedCrossRefGoogle Scholar
  17. Baumann, L., and Banumann, P., 1991, Effects of components of the Bacillus sphaericus toxin on mosquito larvae and mosquito-derived tissue culture-gorwn cells, Curr. Microbiol. 23: 51–57.CrossRefGoogle Scholar
  18. Baumann, P., Clark, M.A., Baumann, L., and Broadwell, A.H., 1991, Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins, Microbial. Rev. 55: 425–436.Google Scholar
  19. Becker, N., and Ludwig, M., 1993, Investigation on possible resistance in Aedes vexans field populations after a 10year application of Bacillus thuringiensis israelensis, J Am. Mosq. Control Assoc. 9: 221–224.PubMedGoogle Scholar
  20. Becker, N., Zgomba, M., Ludwig, M., Petric, D., and Rettich, F., 1992. Factors influcencing the activity of Bacillus thurineisnsis var. israelensis treatment, J. Am. Mosq. Control Assoc. 8: 285–289.PubMedGoogle Scholar
  21. Becker, N., Zgomba, M., Petric, D., Beck, M., and Ludwig, M., 1995, Role of larval cadavers in recycling processes of Bacillus sphaericus, J. Am. Mosq. Control Assoc. 11: 329–334.PubMedGoogle Scholar
  22. Becnel, J.J., 1996, Biological control of Aedes aegypti with the microsporidium Edhazardia aedis, Proceeding of the 5“’ Simposio de Control Biologico, June 9–14, Foz do Iguacu, pp. 227–231.Google Scholar
  23. Becnel, J.J., 1988, Development of viral pathogens for control of Culicidae, Proceedings of the 6’h Simposio de Controle Biologico, May 24–28, Rio de Janeiro, pp. 145–150.Google Scholar
  24. Berry, C., and Hindley, J., 1987, Bacillus sphaericus strain 2362: identification and nucleotide sequence of the 41.9kDa toxin gene, Nucleic Acids Res. 15: 5891–5896.Google Scholar
  25. Berry, C., Hindley, J., Ehrhardt, A.F., and de Souza, G.T., 1993, Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins, J. Bacteriol. 175: 510–518.PubMedGoogle Scholar
  26. Berry, C., Jackson-Yap, J., Oei, C., and Hindley, J., 1989, Nucleotide sequence of 2 toxin genes from Bacillus sphaericus 1ab59: Sequence comparisons between 5 highly toxinogenic strains, Nucleic Acids Res. 17: 7516–7520PubMedCrossRefGoogle Scholar
  27. Blanco Castro, S. D., Martinez Arias, A., Cano Velasquez, O.R., Tello Granados, R., and Mendoza, I., 2000, Introduction of Bacillus sphaericus strain 2362 (GRISELESF) for biological control of malaria vectors in Guatemal, Re. Cubana Med. Trop. 52: 37–43.Google Scholar
  28. Bourgouin, C., Delécluse, A., de la Torre, F., and Szulmajster, J., 1990, Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression, Appl. Environ. Microbiol. 56: 340–344.PubMedGoogle Scholar
  29. Broadwell, A.H., and Baumann, P. 1987, Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin, Appl. Environ. Microbiol. 53: 1333–1337.PubMedGoogle Scholar
  30. Broadwell, A.H., Baumann, L., and Baumann, P., 1990, Larvicidal properties of the 42 and 51 kilodalton Bacillus sphaericus proteins expressed in different bacterial hosts: evidence for a binary toxin, Curr. Microbiol. 21: 361–365.CrossRefGoogle Scholar
  31. Chan, S.W., Thanabalu, T., Wee, B.Y., and Porter, A.G., 1996, Unusual amino acid determinants of host range in the Mtx2 family of mosquitocidal toxins, J. Biochem. 271: 14183–14186.Google Scholar
  32. Charles, J.F., and de Barjac, H., 1981, Variation du PH de L’intestin moyen d’Aedes aegypti en relation avec l’ intoxication par les cristaux de Bacillus thuringiensis subsp. israelensis, Bull. Soc. Patrol. Exit. 74: 91–95.Google Scholar
  33. Charles, J.F., 1987, Ultra structural midgut events in Culicid larvae fed with Bacillus sphaericus 2297 spore/crystal complex, Ann. Microbiol. (Inst. Pasteur) 138: 471–484.CrossRefGoogle Scholar
  34. Charles, J.F., Harmon, S., and Baumann, P., 1993, Inclusion bodies and crystals of Bacillus sphaericus mosquitocidal proteins expressed in various bacterial hosts, Res. Microbiol. 144: 411–416.PubMedCrossRefGoogle Scholar
  35. Charles, J.F., and Nielsen-LeRoux, C., 2000, Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena, Mem. Inst. Oswaldo Cruz 95: 201–206.PubMedCrossRefGoogle Scholar
  36. Charles, J.F., Nielson-LeRoux, C., and Delecluse, A., 1996, Bacillus sphaericus toxins: molecular biology and mode of action, Ann. Rev. Entomol. 41: 389–410.Google Scholar
  37. Charles, J.F., Silva-Filha, M.H., Nielsen-LeRoux, C., Humphreys, M.J., and Berry, C., 1997, Binding of 51- and 42 KDa individual components from Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae), FEMS Microbiol. Lett. 156: 153–159.PubMedCrossRefGoogle Scholar
  38. Chen, Z.S., Zhang, Y.M., Cai, C.J., and Yuan, Z.M., 1994, Efficacy of Bacillus sphaericus C3–41 against Anopheles sinensis in laboratory and in fields, Disinsectional Microorganism 4: 82–84.Google Scholar
  39. Clark, M.A., and Baumann, P., 1990, Deletion analysis of the 52-kilodalton protein of the Bacillus sphaericus 2362 binary mosquitocidal toxin: construction of derivatives equivalent to the larva-processed toxin, J. Bacterial. 172: 6759–6763.Google Scholar
  40. Cokmus, C., Davidson, E.W., and Cooper, K., 1997, Electrophysical effects of Bacillus sphaericus binary toxin on cultured mosquito cells, J. Invertebr. Pathol. 69: 197–204.PubMedCrossRefGoogle Scholar
  41. Dai, J.Y., Zhang, J.B., and Yu, Z.N., 1989, Studies on semi-solid fermentation of mosquito-larvicidal Bacillus sphaericus, Disinsectional Microorganism 2: 47–48Google Scholar
  42. Dai, J.Y., Zhang, J.B., and Yu, Z.N., 1994, The acute toxicity test of semi-solid fermentation products of Bacillus sphaericus CS-8 against mosquito, Disinsectional Microorganism 3: 94–97Google Scholar
  43. Dai, S.M., and Gill, S.S., 1993, In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. Israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases, Insect Biochem. Mol. Biol. 23: 273–83.Google Scholar
  44. Darboux, I., Nielsen-LeRoux, C., Charles, J.F., and Pauron, D., 2001. The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression, Insect Biochem. Mol. Biol. 31: 981–990.PubMedCrossRefGoogle Scholar
  45. Das, P.K., and Amalraj, D.D., 1997, Biological control of malaria vectors, Indian J. Med. Res. 106: 174–197.PubMedGoogle Scholar
  46. Davidson, E.W., and Titus, M., 1987, Ultrastructural effects of the Bacillus sphaericus mosquito larvicidal toxin on cultured mosquito cells, J. Invertebr. Pathol. 50: 213–220.PubMedCrossRefGoogle Scholar
  47. Davidson, E.W., 1981, A review of the pathology of bacilli infecting mosquitoes, including an ultrastructure of larvae fed Bacillus sphaericus 1593 spores, Dev. ind. Microbial. 22: 69–81.Google Scholar
  48. Davidson, E., Oei, C., Meyer, M., Bieber, A.L., Hindley J., and Berry C., 1990, Interaction of the Bacillus sphaericus mosquito larvicidal proteins, Cant Microbiol. 36: 870–878.CrossRefGoogle Scholar
  49. Davidson, E.W., 1989, Variation in binding of Bacillus sphaericus toxin and wheat germ agglutinin to larval midgut cells on six species of mosquitoes, J. Invertebr. Pathol. 53: 251–259.PubMedCrossRefGoogle Scholar
  50. de Barjac, H., Sabald, M., Charles, J.F., Cheong, W.H., and Lee, H.L., 1990, Closteridium bifermentans serovar malaysia, une nouvelle bacterie anaerobie pathogene des larves de moustiques et de simulies, C. R. Acad. Sci. Paris 310: 383–387.Google Scholar
  51. de Marsac, F., de la Torre, F., and Szulmajster, J., 1987, Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2, Mol. Gen. Genet. 209: 396–398.CrossRefGoogle Scholar
  52. Delecluse, A., Barloy, F., and Rosso, M.L., 1996, Les bacteries pathogenes des larves de Diteres: structure et specificite des toxins, Ann. Microbiol. (Instit. Pasteur) 7: 217–231.CrossRefGoogle Scholar
  53. Delecluse, A., Poncet, S., Klier, A., and Rapoport, G., 1993, Expression of cryIVA and cryIVB genes independently or in combination in a crystal minus strain of Bacillus thuringiensis subsp. israelensis, Appl. Environ. Microbial. 59: 3922–3927.Google Scholar
  54. Delecluse, A., Rosso, M.L., and Ragni, A., 1995, Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein, Appl. Environ. Microbiol. 61: 4230–4235.PubMedGoogle Scholar
  55. Dennett, J.A., and Meisch, M.V., 2000, Effectiveness of aerial-and ground-applied Bacillus formulations against Anopheles quadrimaculatus larvae in Arkansas rice plots, J. Am. Mosq. Control Assoc. 16: 229–233.PubMedGoogle Scholar
  56. Earp, D.J., and Ellar, D.J., 1987, Bacillus thuringiensis var morrisoni strain PG14: nucleotide sequence of a gene encoding a 27kDa crystal protein, Nucleic Acids Res. 15: 3619–3721.Google Scholar
  57. Elangovan, G., Shanmugavelu, M., Rajamohan, F., Dean, D.H., and Jayaraman, K., 2000, Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis, Biochem. Biophys. Res. Commun. 276: 1048–1055.PubMedCrossRefGoogle Scholar
  58. England, D.F., Penfold, R.J., Delaney, S.F., and Rogers, P.L., 1997, Isolation of Bacillus megaterium mutants that produce high levels of heterologous protein, and their use to construct a highly mosquitocidal strain, Curr Microbiol. 35: 71–76.PubMedCrossRefGoogle Scholar
  59. Federici, B.A., 1995, The future of microbial insecticides as vector control agents, J. Am. Mosq. Control Assoc. 11: 260–268.PubMedGoogle Scholar
  60. Federici, B.A., 1985, Viral pathogens of mosquito larvae, Bull. Amer. Mosq. Control Assoc. 6: 62–74.Google Scholar
  61. Finney-Crawley, J.R., 1985, Future prospects for commercial development of nematode agents for Biocontrol, in: Integrated Mosquito Control Methodologies, M. Laired and J.W. Miles, eds., Academic Press, Inc., Orlando, FL, USA.Google Scholar
  62. Frachon, E., Hamon, S., Nicolas, L., and de Barjac, H., 1991, Cellular fatty acid analysis as a potential tool for predicting mosquitocidal activity of Bacillus sphaericus strains, Appl. Environ. Microbiol. 57: 3394–3398.PubMedGoogle Scholar
  63. Georghiou, G.P., Malik, J.I., Wirth, M., and Sainato, K, 1992, Characterization of resistance of Culex quinquefasciatus to the insecticidal toxins of Bacillus sphaericus (strain 2362), in: University of California, Mosquito Control Research, Annual Report, J. Coast and L. Chase, eds., University of California Press, Berkeley, USA, pp. 34–35.Google Scholar
  64. Gerberg, E.J., 1985, Sequential biocontrol application in the use of Toxorhychites spp. in: Integrated Mosquito Control Methodologies, M. Laired and J.W. Miles, eds., Academic Press, Inc., Orlando, FL.Google Scholar
  65. Goldberg, L., and Margalit, J., 1977, Bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculate, Culex univittatus, Aedes aegypti and Culex pigpens, Mosq. News 37: 355–358.Google Scholar
  66. Gratz, N.S., 1996, Comments on “Adverse assessments of Gambusia affinis”, J. Am. Mosq. Control Assoc. 12: 160–161.Google Scholar
  67. Guillet, P., Kurtak, D.C., Philippon, B., and Meyer, R, 1990, Use of Bacillus thuringiensis israelensis for Onchocerciasis control in West Africa, in: Bacterial Control of Mosquitoes and Blackflies, H. de Barjac and D. J. Sutherland, eds., Rutgers University Press, New Brunswick, USA.Google Scholar
  68. Hougard, J.M., Yameogo, L., Seketeli, A., Boatin, B., and Dadzie, K.Y., 1997, Twenty-two years of blackly control in the Onchocerciasis Control Programme in West Africa, Parasitol. Today 13: 425–431.PubMedCrossRefGoogle Scholar
  69. Humphreys, M.J., and Berry, C., 1988, Variants of the Bacillus sphaericus binary toxin: implications for differential toxicity strains, J. Invertebr. Pathol. 71: 184–85.CrossRefGoogle Scholar
  70. Hwang, S.H., Saitoh, H., Higuchi, K., Mizuki, E., and Ohba, M., 1996, Cloning of a mosquitocidal toxin gene of Bacillus thuringiensis servar higo (H44), Second Pacific RIM Conference on Biotechnology of Bacillus thuringiensis and its Impact to the Environment, November 4–8, Chang Mai, Thailand (Abstract).Google Scholar
  71. lbrra, J.E., and Federici, B.A. 1986, Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis, J. Bacteriol. 165: 527–533.Google Scholar
  72. Idachaba, M.A., and Rogers P.L., 2001, Production of asporogenous mutants of Bacillus sphaericus 2362 in continuous culture, Lett. Appl. Microbiol. 33: 40–44.PubMedCrossRefGoogle Scholar
  73. Jaronsky, S.T., and Axtel I, R.C., 1982, Effects of organic water pollution on the infection on the infectivity of the fungus Lagenidium giganteum for larvae of Culex quinquefasciatus: field and laboratory evaluation, J. Med Entomol. 19: 255–262.Google Scholar
  74. Kar, I., Eapen, A., Ravindran, K.J., Chandrahas, R.K., Appavoo, N.C., Sadanand, A.V., and Dhanraj, B.,1997, Field evaluation of Bacillus sphaericus, H5a5b and B. thuringiensis var. israelensis, H14 against the Bancroftian filariasis vector Culex quinquefasciatus, Say in Chennai, India, Indian J. Malariol. 34: 25–36.Google Scholar
  75. Kawalek, M.D., Benjamin, S., Lee, H.L., and Gill, S.S. 1995, Isolation and identification of novel toxins from a new mosquitocidal isolate from Malaysia, Bacillus thuringiensis subsp. jegathesan, Appl. Environ. Microbiol. 61: 2965–2969.PubMedGoogle Scholar
  76. Kellen, W., Clark, T., and Lindergren, J., 1965, Bacillus sphaericus Neide as a pathogen of mosquitoes, J. Invertebr. Pathol. 7: 442–448.CrossRefGoogle Scholar
  77. Khampang, P., Chungjatuporchai, W., Luxananil, P., Panyim, S., 1999, Efficient expression of mosquito-larvicidal proteins in a gram-negative bacterium capable of recolonization in the guts ofAnopheles dirus larvae, Appl. Microbial. Biotechnol. 51: 79–84.CrossRefGoogle Scholar
  78. Kim, K.H., Ohba, M., and Kim, B.W. 1996, Cloning of a hemolytic mosquitocidal delta-endotoxin gene of Bacillus thuringiensis 73E10–2 (Serotype 10) into Bacillus subtilis and characterization of the cyt gene product, J. Microbiol. Biotechnol. 6: 326–330.Google Scholar
  79. Koni, P.A., and Ellar, D.J., 1993, Cloning and characterization of a novel Bacillus thuringiensis cytolytic deltaendotoxin, J Mol. Biol., 229: 319–327.PubMedCrossRefGoogle Scholar
  80. Krych V.K., Johnson J.L., and Yousten A.A., 1980, Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. lnt. J. Syst. Bact. 30: 476–482.CrossRefGoogle Scholar
  81. Kumar, A., Sharma, V.P., Sumodan, P.K., Thavaselvam, D., and Kamat, R.H., 1994, Malaria control utilizing Bacillus sphaericus against Anopheles stephensi in Panaji, Goa, J Am. Mosq. Control Assoc. 10: 534–539.PubMedGoogle Scholar
  82. Kumar, A., Sharma, V.P., Thavaselvam, D., Sumodan, P.K., Kamat, R.H., Audi, S.S., and Surve, B.N., 1996, Control of Culex quinquefasciatus with Bacillus sphaericus in Vasco City, Goa, J Am. Mosq. Control Assoc. 12: 409–413.PubMedGoogle Scholar
  83. Lakshmi-Narasu, M., and Gopinathan, K.P., 1888, Effect of Bacillus sphaericus 1593 toxin on choline acetyl transferase and mitochondrial oxidative activities of the mosquito larvae, Ind. J. Biochem. Biophys. 25: 253 256.Google Scholar
  84. Lecadet, M.M, Frachon, E., Cosmao-Dumanoir, V., Ripouteau, H., Hamon, S., Laurent, P., and Thiery, I, 1999, Updating the H-antigen classification of Bacillus thuringiensis, J. Appl. Microbiol. 86: 660–672.PubMedCrossRefGoogle Scholar
  85. Lecadet, M.M., 1996, La lutte bacteriologique control les insectes: une vielle histoire ties actuelle, Ann. Instit. Pasteur Microbiol. 74: 200–216.Google Scholar
  86. Lereclus, D., Deleculse, A., and Lecadet, M.M., 1993, Diversity of Bacillus thuringiensis toxins and genes, in: Bacillus thuringiensis and Environmental Biopesticide: Theory and Practice, P. S., Entwistle, J. S. Cory, M. J. Bailey and S. R. Higgs, eds., Chichester, Jphn Wiley and Sons Ltd., pp. 309–329.Google Scholar
  87. Li, Q.B., 1989, Toxicity comparison of several Bacillus sphaericus larvicides against the larvae of seven mosquito species, Chinese J. Epidemiol. 10: 31–35 (In Chinese).Google Scholar
  88. Li, T.Y., Sun, F., Yuan, Z.M., Zhang, Y.M., and Pang, Y., 2000, Coexpression ofcry7Aa of Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus binary toxin gene in Acrystalliferous strain of B. thuringiensis, Curr. Microbiol. 40: 322–326.PubMedCrossRefGoogle Scholar
  89. Liu, E.Y., Zhang, Y.M., Cai, C.J., Yan, J.P., and Chen, Z.S. 1989, Pilot-scale study of Bacillus sphaericus C3–41 mosquito-larvicidal formulation, Chinese J. Epidemiol. 10: 7–9 (In Chinese).Google Scholar
  90. Liu, E.Y., Zhang Y.M., Yuan, Z.M., and Wu, F.D., 1987, Esterase patterns of mosquito-larvicidal Bacillus sphaericus, Disinsectional Microorganism 1:91–93(In Chinese).Google Scholar
  91. Liu, J.W., Hindley, J., Porter, A.G., and Priest, F.G., 1993, New high-toxicity mosquitocidal strains of Bacillus sphaericus lacking a 100-kilodalton-toxin gene, Appl. Environ. Microbiol. 59: 3470–3473.PubMedGoogle Scholar
  92. Liu, J.W., Yap, W.H., Thanabalu, T., and Porter, A.G., 1996, Efficient synthesis of mosquitocidal toxin Asticcacaulis excentricus demonstrates potential of gram-negative bacteria in mosquito control, Nature Biotech. 14: 343–347CrossRefGoogle Scholar
  93. Liu, Y., Sun, F., Yuan, Z.M., Liu, E.Y., and Zhang, Y.M., 1999, Location of the binary toxin gene of Bacillus sphaericus and some biological characteristics of its asprogenous mutants, Acta Microbiologica Sinica 39:426–429 (In Chinese).Google Scholar
  94. Liu, Y., Wei, B.Y., and Fan, Y.L., 1990, Cloning and expression of mosquito larvicidal protein gene from a highly toxic local strain of Bacillys sphaericus, Chin. J Biotechnol. 6: 195–198 (In Chinese).Google Scholar
  95. Luo, S.B., Yan, J.P., and Chen, Z.S., 1994, The investigation of insecticidal bacteria source in South China, Disinsectional Microorganism 3:86–90 (In Chinese).Google Scholar
  96. Mariappan, T., Amalraj, D.D., Doss, P.S., Sahu, S.S., Jambulingam, P., Somachary, N., Reddy, C.M., Kalyanasundaram, M., and Das, P.K., 1999, Field evaluation of Spicbiomoss, a biolarvicidal formulation of Bacillus sphaericus against immatures of Culex quinquefasciatus and Anopheles species, Indian J Med. Res. 110: 128–132.PubMedGoogle Scholar
  97. Miller, L.H., 1992, The challenge of malaria, Science, 257: 36–37.PubMedCrossRefGoogle Scholar
  98. Moser, B.A., Cockburn, A.F., and Becnel, J.J., 1998, Molecular characterization of a mosquito nuclear polyhedrosis virus, Acta Parasitologica Portugal, Abstract of XI European SOVE Meeting, October 13–17, Lisbon, Portugal, pp. 36.Google Scholar
  99. Mulla, M.S., Rodcharoen, J., Ngamsuk, W., Tawatsin, A., Pan-Urai, P., and Thavara, U., 1997, Field trials with Bacillus sphaericus formulations against polluted water mosquitoes in suburban area of Bankok, Thailand, J. Am. Mosq. Control Assoc. 13: 297–304.PubMedGoogle Scholar
  100. Mulla, M.S., Su, T., Thavara, U., Tawatsin, A., Ngamsuk, W., and Pan-Urai, P., 1999, Efficacy of new formulations of the microbial larvicide Bacillus sphaericus against polluted water mosquitoes in Thailand, J. Vector Ecol. 24: 99–110.PubMedGoogle Scholar
  101. Nicolas, L., Charles, J.F., and de Barjac, H., 1993, Clostridium bifermentants servar malaysia: characterization of putative mosquito larvicidal proteins, FEMS Microbiol. Lett. 113: 23–28.Google Scholar
  102. Nicolas, L., Lercroisey, A., and Charles, J.F., 1990, Role of the gut proteinases from mosquito larvae in the mechanism of action and the specificity of the Bacillus sphaericus toxin, Can. J Microbiol. 36: 804–807.PubMedCrossRefGoogle Scholar
  103. N ielsen-LeRoux, C., and Charles, J.F., 1992, Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membrane from mosquito larvae, Eur. J. Biochem. 210: 585–580.PubMedCrossRefGoogle Scholar
  104. Nielsen-LeRoux, C., Charles, J.F., Thiery, I., and Georghiou, G.P., 1995, Resistance in the laboratory population of Culex quinquefasciatus to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes, Eur. J Biochem. 228: 206–210.PubMedCrossRefGoogle Scholar
  105. Nielsen-LeRoux, C., Pasquier, F., Charles, J. F., Sinegre, G., Gaven, B., and Pasteur, N., 1997, Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens mosquito larvae (Diptera: Culicidae), J. Med. Entomo 134: 321–327.Google Scholar
  106. Oei, C., Hindley, J., and Berry, C., 1991, Binding of purified Bacillus sphaericus binary toxin and its deletion derivates to Culex quinquefasciatus guts: elucidation of functional binding domains, J Gen. Microbiol. 138: 265–274.Google Scholar
  107. Orduz, S., Diaz, T., Restrepo, N., and Patino, M.M., 1996, Tamayo M. Biochemical immunological and toxicological characteristics of the crystals proteins of Bacillus thuringiensis subsp. medellin, Mem. Inst. Oswaldo Cruz 91: 231–237.PubMedCrossRefGoogle Scholar
  108. Orduz, S., Realpe, M., Arango, R., Murillo, L. A., and Deleculse, A., 1998, Sequence of the cryl lBb gene from Bacillus thuringiensis subsp. medellin and toxicity analysis of its encoded protein, Biochem. Biophys. Acta 1388: 267–272.PubMedCrossRefGoogle Scholar
  109. Orduz, S., Rojas, W., Correa, M.M., Montoya, A.E., and de Barjac, H., 1992, A new serotype of Bacillus thuringiensis from Colombia toxic to mosquito larvae, J Invertebr. PathoL 59: 99–103.PubMedCrossRefGoogle Scholar
  110. Orduz, S.N., Restrepo, M.M., and Patino, W.R., 1995, Transfer of toxin genes to alternate bacterial hosts for mosquito control, Mem. Inst. Oswaldo Cruz 90: 97–107.PubMedCrossRefGoogle Scholar
  111. Orlova, M.V., Smimova, T.A., Ganushjina, L.A., Yacubovith, V.Y., and Azizbekyan, R.R., 1998, Insecticidal activity of Bacillus laterosporus, Appl. Environ. Microbiol. 64: 2723–2725.PubMedGoogle Scholar
  112. Padua, L.E., and Federici, B.A., 1990, Development of mutants of the mosquitocidal bacterium Bacillus thuringiensis subsp. morrisoni (PG 14) toxsin to lepidopterous or dipterous insects, FEMS Microbiol. Lett. 66: 257–262.CrossRefGoogle Scholar
  113. Poncet, S., Bernard, C., Dervyn, E., Cayley, J., Klier, A., and Rapoport, G., 1997, Improvement of Bacillus sphaericus toxicity against Dipteran larvae by integration, via homologous recombination, of the Cry 1 1 A toxin gene from Bacillus thuringiensis subsp. israelensis, Appl. Environ. Microbiol. 63: 4413–4420.PubMedGoogle Scholar
  114. Poncet, S., Delecluse, A., Klier, A., and Rapoport, G., 1995, Evaluation of Synergistic Interactions among the CryIVA, CryIVB, and CryIVD Toxic Components of B. thuringiensis subsp. israelensis crystals, J. Invertebr. Pathol. 66: 131–135.CrossRefGoogle Scholar
  115. Poncet, S., Anello, G., Delecluse. A., Klier, A., and Rapoport, G., 1993, Role of CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis crystals, Appl. Environ. Microbiol. 59: 3928–3930.Google Scholar
  116. Porter, A.G., Davidson, E.W., and Liu, J.W., 1993, Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquito, Microbiol. Rev. 57: 838–861.PubMedGoogle Scholar
  117. Priest, F.G., 1992, Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis, J Appl. Bacteriol. 72: 357–369.PubMedCrossRefGoogle Scholar
  118. Priest, F.G., Ebrup, L., and Carter, P.E., 1997, Distribution and characterization of mosquitocidal toxin genes in some strains of Bacillus sphaericus, Appl. Environ. Microbiol. 63: 1195–1198.PubMedGoogle Scholar
  119. Rao, D.R., Mani, T.R., Rajendran, R., Joseph, J., Gajanana, A.S, and Reuben, R., 1995, Development ofa high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India, J. Am. Mosq. Control Assoc. 11: 1–5.PubMedGoogle Scholar
  120. Regis, L., da Silva, S.B., and Melo-Santos, M.A., 2000, The use of bacterial larvicides in mosquito and black fly control programmes in Brazil, Mem. Inst. Oswaldo Cruz 95: 207–210.PubMedCrossRefGoogle Scholar
  121. Regis, L., Silva-Filha, M.H., de Oliveira, C.M.F., Rios, E.M., da Silva, S.B., and Furtado, A.F., 1995, Integrated control measures against Culex quinquefasciatus, the vector of filariasis in Recife, Mem. Inst. Oswaldo Cruz 90: 115–119.PubMedCrossRefGoogle Scholar
  122. Ren, G.X., Chen, W., and Chen, J.R., 1982, Toxicity of Bacillus sphaericus 1593 to larvae of Culex pipiens and new isolate TS-1, Acta Entomologica Sinica 25:349–350 (In Chinese).Google Scholar
  123. Roberts, D. W., Daoust, R., and Wraight, A., 1983, Bibliography on pathogens ofmedical important arthropods, World Health Organization, Geneva.Google Scholar
  124. Rodcharoen, J., and Mulla, M.S., 1997, Biological fitness of Culex quinquefasciatus (Diptera: Culicidae) susceptible and resistant to Bacillus sphaericus, J. Med. Entomol. 34: 5–10.PubMedGoogle Scholar
  125. Rodcharoen, J., and Mulla, M.S., 1996, Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus, J Am. Mosq. Control Assoc. 12: 247–250.PubMedGoogle Scholar
  126. Rodcharoen, J., and Mulla, M.S., 1994, Resistance development in Culex quinquefasciatus to the microbial agent Bacillus sphaericus, J. Econ. Entomol. 87: 1130–1140.Google Scholar
  127. Rodrigues, I.B., Tadei, W.P., and Dias J.M., 1998, Studies on the Bacillus sphaericus larvicidal activity against malarial vector species in Amazonia, Mem. Inst. Oswaldo Cruz 93: 441–444.PubMedCrossRefGoogle Scholar
  128. Romero, M., Gill, F.M., and Orduz, S., 2001, Expression of mosquito active toxin genes by a Colombian native strain of the Gram-negative bacterium Asticcacaulis excentricus, Mem. Inst. Oswaldo. Cruz. 96: 257–263.PubMedCrossRefGoogle Scholar
  129. Rosso, M.L., and Delecluse, A., 1997, Contribution of the 65-kilodalton protein encoded by the cloned gene cry 19A to the mosquitocidal activity of Bacillus thuringiensis subsp. jegathesan, App!. Environ. Microbial. 63: 4449–4455.Google Scholar
  130. Rupp, H.R., 1996, Adverse assessments of Gambusia affinis: an alternate view for mosquito control practioners, J Am. Mosq. Control Assoc. 12: 155–159.PubMedGoogle Scholar
  131. Russell, B.L., Jelley, S.A., and Yousten, A.A., 1989, Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362, Appl. Environ. Microbiol. 55: 294–297.PubMedGoogle Scholar
  132. Sangthongpitag, K., Penfold, R.J., Delaney, S.F., and Rogers, P.L., 1997, Cloning and expression of the Bacillus sphaericus 2362 mosquitocidal genes in a non-toxic unicellular cyanobacterium, Synechococcus PCC6301, Appl. Microbiol. Biotechnol 47: 379–384.PubMedCrossRefGoogle Scholar
  133. Seleena, P., Lee, H.L., and Lecadet, M.M., 1997, A novel insecticidal serotype of Clostridium bifermentans, J. Am. Mosq. Control Assoc. 13: 395–397.PubMedGoogle Scholar
  134. Servant, P., Rosso, M.L., Hamon, S., Poncet, S., Delecluse, A., and Rapoport, G., 1999, Production of Cry I l A and Cry 11 Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations, Appl. Environ. Microbiol. 65: 3021–3026.PubMedGoogle Scholar
  135. Service, M.W., ed., 1986 Blood-sucking insects: vectors of disease, Edward Arnold, London.Google Scholar
  136. Shanmugavelu, M., Rajamohan, F., Kathirvel, M., Elangovan, G., Dean, D.H., and Jayaraman, K., 1998, Functional complementation of nontoxic mutant binary toxins ofBacillus sphaericus 1593M generated by site-directed mutagenesis, Appl. Environ. Microbiol. 64: 756–759.PubMedGoogle Scholar
  137. Shi, Y.S., Yuan, Z.M., Cai, Q.X., Yu, J.P., Yu, J.X, and Pang, Y., 2001, Cloning and expression of the binarytoxin gene from Bacillus sphaericus IAB872 in a crystal-minus Bacillus thuringiensis subsp. israelensis, Curr. Microbiol. 43: 21–25.PubMedCrossRefGoogle Scholar
  138. Silva-Filha, M.H., Nielsen-LeRoux, C., and Charles, J.F., 1997, Binding kinetics of Bacillus sphaericus binary toxin to midgut brush border membranes of Anopheles and Culex sp. larvae, Eur. J Biochem. 247: 754–761.PubMedCrossRefGoogle Scholar
  139. Silva-Filha, M.H., Nielsen-LeRoux, C., and Charles, J.F., 1999, Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens, Insect Biochem. Mol. Biol. 29: 711–721.PubMedCrossRefGoogle Scholar
  140. Silva-Filha, M.H., Regis, L., Nielsen-LeRoux, C., and Charles, J.F., 1995, Low-level resistance to Bacillus sphaericus in a field treated population of Culex quinquefasciatus, J. Econ. Entomol. 88: 525–530.Google Scholar
  141. Sinegre, G., Babinot, M., Quermel, J.M., and Gavan, B., 1994, First field occurrence of Culex pipiens resistance to Bacillus sphaericus in southern France, 8th Eur. Meet. Soc. Vector Ecol. Barcelona, Italy.Google Scholar
  142. Singh, G.J.P., and Gill, S.S., 1988, An electron microscope study of the toxin action of Bacillus sphaericus in Culex quinquefasciatus larvae, J Invertebr. Pathol. 52: 237–247.PubMedCrossRefGoogle Scholar
  143. Skovmand, O., and Sanogo, E., 1999, Experimental formulation ofBacillus sphaericus and B. thuringiensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso, J Med. Entomol. 36: 62–367.PubMedGoogle Scholar
  144. Su, T.Y., and Mulla, M.S., 1999, Field evolution of new water-dispersible granular formulation of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in Microcosms, J Am. Mosq. Control Assoc. 15: 356–365.PubMedGoogle Scholar
  145. Sun, M., Luo, X., Dai, J., Qu, K., Liu, Z., Yu, L., Chen, Y., and Yu, Z., 1996, Evaluation of Bacillus thuringiensis and Bacillus sphaericus Strains from Chineses soils toxic to mosquito larvae, J. Invertebr. Pathol. 68: 74–77.PubMedCrossRefGoogle Scholar
  146. Swezey, O.H., 1930, Entomology Rep., Comm. Exp. Stn. Hawaii, Sugar Plantation Assoc. 1928–1929, pp. 47–79.Google Scholar
  147. Thanabalu, T., and Berry, C., 1993, Cytotoxicity and ADP-ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus 5511–1: possible roles of the 27-kilodalton and 70-kilodalton peptides, J. Bacteriol. 175: 2314–2320.PubMedGoogle Scholar
  148. Thanabalu, T., and Porter, A.G., 1996, A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa, Gene 170: 85–89.PubMedCrossRefGoogle Scholar
  149. Thanabalu, T., and Porter, A.G., 1995, Efficient expression of a 100-kilodalton mosquitocidal toxin in protease-deficient recombinant Bacillus sphaericus, Appt Environ. Microbial. 61: 4031–4036.Google Scholar
  150. Thanabalu, T., Hindley, J., and Berry, C., 1992a, Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus 5511–1, J. Bacterial. 174: 5051–5056.Google Scholar
  151. Thanabalu, T., Hindley, J., Brenner, S., Oei, C., and Berry, C., 1992b, Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae, Appl. Environ. Microbial. 58: 906–910.Google Scholar
  152. Thanabalu, T., Hindley, J., Jackson-Yap, J., and Berry, C., 1991, Cloning, sequence and expression of a gene encoding a 100 kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1, J. Bacterial. 173: 2776–2785.Google Scholar
  153. Thiery, I., and de Barjac, H., 1989, Selection of the most potent Bacillus sphaericus strains, based on activity ratios determined on three mosquito species, Appl. Microbial. Biotechnol. 31: 577–581.CrossRefGoogle Scholar
  154. Thiery, I., Back, C., Barbazan, P., and Singere, G., 1996, Application de Bacillus thuringiensis et de B.sphaericus dans la demoustication et la lutte contre les vecteurs de maladies tropicals, Ann. Microbial. (Instil. Pasteur) 72: 247–260.Google Scholar
  155. Thiery, I., Delecluse, A., Tamayo, M.C., and Orduz, S., 1997, Identification of a gene Cyt1 A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal negative B. thuringiensis strain, Appl. Environ. Microbiol. 63: 468–473.PubMedGoogle Scholar
  156. Thiery, I., Fouque, F., Gaven, B., and Lagneau, C., 1999, Residual efficacy of B. thuringiensis servar medellin and jegathesan on Culex pipiens and Aedes aegypti larvae, J. Am. Mosq. Control Assoc. 15: 371–379.PubMedGoogle Scholar
  157. Thiery, I., Hauron, S., Cosmao-Dumanoir, V., and de Barjac, H., 1992a, Vertebrate safety of Clostridium bifermentants servar malaysia, a new larvicidal agent for vector control, J. Econ. Entomol. 85: 1618–1623.PubMedGoogle Scholar
  158. Thiery, I., Hamon, S., Delecluse, A., and Orduz, S., 1998, The introduction into Bacillus sphaericus of the Bacillus thuringiensis subsp. medellin cty1Ab1 gene results in higher susceptibility of resistant mosquito larva population to B. sphaericus, Appl. Environ. Microbiol. 64: 3910–3916.PubMedGoogle Scholar
  159. Thiery, 1., Ofori, J., and Cosmao, D.V., 1992b, New mosquitocidal strains from Ghana belonging to serotypes H3, H6, and H48 of Bacillus sphaericus, Appl. Microbial. Biotechnol. 37: 718–722Google Scholar
  160. Vyonne, A.O., and Walton, W., 1999, Comparative efficacy of the three spine stickleback (Gasteroteus aculeatus) and the mosquito fish (Gambusia afnis) for mosquito control, J. Am. Mosq. Control Assoc. 15: 380–390.Google Scholar
  161. Wang, M.X., Tao, Q., and Yang, X.J., 1989, Comparison field trial of two microbial products for their mosquito-larvicidal activities, Chin. J. Epidemiol. 10: 16–19 (In Chinese).Google Scholar
  162. WHO, 1993, Report on the workshop on the large scale-use of Bacillus sphaericus to control Culex quinquefasciatus in urban environments,Centre Pasteur Cameroun, Maroua, Cameroun, 19–24 April, 1993.Google Scholar
  163. WHO, 1996, Operational manual on the application of insecticides for control of the mosquito vectors of malaria and other diseases, World Health Organization, Geneva, pp. 1–198.Google Scholar
  164. WHO, 1995, Vector control for malaria and other mosquito-borne diseases, WHO Tech. Rep. 857: 1–90.Google Scholar
  165. Wirth, M.C., Delecluse. A., Federici, B.A., and, Walton, W.E., 1998, Variable cross-resistance to Cry 11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp. israelensis, Appl. Environ. Microbiol. 64: 4174–4179.Google Scholar
  166. Wirth, M.C., Federici, B.A., and Walton, W.E., 2000a, CytlA from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae), Appl. Environ. Microbiol. 66: 1093–1097.PubMedCrossRefGoogle Scholar
  167. Wirth, M.C., Ferrari, J.A., and Georghiou, G.P., 2001, Baseline susceptibility to bacterial insecticides in populations of Culex pipiers complex (Diptera: Culicidae) from California and from the Mediterranean Island of Cyprus, J Econ. Entomol 94: 920–928.PubMedCrossRefGoogle Scholar
  168. Wirth, M.C., Georghiou, G.P., and Federici, A.B., 1997, CytA enable endotoxins of Bacillus thuringiensis to overcome high levels of Cry IVA resistance in mosquito Culex quinquefasciatus, Proc. Natl. Acad. Sci. 94: 10536–10540.PubMedCrossRefGoogle Scholar
  169. Wirth, M.C., Georghiou, G.P., Malik, J.I., and Abro, G.H., 20006, Laboratory selection for resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA, J. Med. Entomol. 37: 534–540.Google Scholar
  170. Woodburn, M.A., Yousten, A.A., and Hilu, K.H., 1995, Random amplified polymorphic DNA fingerprinting of mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus, Int. J. Syst. Bacteriol. 45: 212–217.PubMedCrossRefGoogle Scholar
  171. Wu, D., and Chang, F.N., 1986, Synergism in mosquitocidal activity of 26 and 65 kDA proteins from Bacillus thuringiensis subsp. israelensis crystal, FEBS Lett. 190: 232–236.CrossRefGoogle Scholar
  172. Xia, S,G., Wu, K.L., and Wang, R.G., 1989, Results of Bacillus sphaericus C3–41 larvicidal flowable formulation on controlling larval populations of mosquitoes in large-scale fields in Shashi. Chin. J. Epidemiol. 10: 27–30 (In Chinese).Google Scholar
  173. Xu, B.Z., Zhang, J.B., Yuan, F.Y., and Ming, G.Z., 1989, Efficacy of a Bacillus thuringiensis subsp. israelensis strain 187 formulation against Anopheles sinensis, Deinsecticidal Microorganism 3:116–118 (In Chinese)Google Scholar
  174. Xu, X., Renqui, K., and Yuxiang, H., 1993, High larvicidal activity of intact recombinant Cynobacterium anabaene sp PCC-7120 expression gene-51 and gene-42 of Bacillus sphaericus sp-2297, FEMS Microbiol. Lett. 107: 247–250.Google Scholar
  175. Xu, X., Yan, G., Kong, R., Liu, X., and Yu, L., 2000, Analysis of expression of the binary toxin genes from Bacillus sphaericus in Anabaena and the potential in mosquito control, Curr. Microbiol. 41: 352–356.PubMedCrossRefGoogle Scholar
  176. Xu, Z.S., Zhang, Y.M., and Liu, E.Y., 1993, Histopathological study of Culex pipiens quinquefasciatus larvae treated with Bacillus sphaericus C3–41. Acta. Entomologica. Sinica. 36: 34–36 (In Chinese)Google Scholar
  177. Yadav, R.S., Sharma, V.P., and Upadhyay, A.K., 1997, Field trial of Bacillus sphaericus strain B-101 against filariasis and Japanese encephalitis vectors in India, J. Am. Mosq. Control Assoc. 13: 158–163.PubMedGoogle Scholar
  178. Yang, X.S., Fang, T.Z., Chen, D.H., Cai, G.Y., and Li, M.S., 1983, Studies on the life cycle of Romanomermis jingdeensis (Nematoda: Mermithidae) and host-parasite relationship. Zoological Research 4: 139–146 (In Chinese)Google Scholar
  179. Yap, W.H., Thanabalu, T., and Porter, A.G., 1994, Expression of mosquitocidal toxin genes in a gas-vacuolated strain of Ancylobacter aquaticus, Appl. Environ. Microbiol. 60: 4199–4202.PubMedGoogle Scholar
  180. Yiallouros, M., Storch, V., Thiery, I., and Becker, N., 1994, Efficacy of Clostridium bifermentants servar malaysia on target et non tat organisms, J. Am. Mosq. Control Assoc. 10: 51–55.PubMedGoogle Scholar
  181. Yousten, A.A., de Barjac, H., Hedrick, J., Cosmao-Dumanoir, V., and Myers, P., 1980, Comparison between bacteriophage typing and stereotyping for the differentiation of Bacillus sphaericus strains, Ann. Microbiol. (Inst. Pasteur) 13B: 297–308.Google Scholar
  182. Yuan, F,Y., Ming, G.Z., and Zhang, J.B., 1996, Investigation of resistance in mosquitoes after ten years application of Bacillus thuringiensis subsp. israelensis in Shashi, Chin. J. Epidemiol. 7: 401–403 (In Chinese).Google Scholar
  183. Yuan, Z.M., Chen, Z.C., Liu, E.Y., and Zhang, Y.M., 1997, Isolation of mosquito-larvicidal Bacillus sphaericus from the soil samples collected in Hanna, China, Microbiology 24: 203–205.Google Scholar
  184. Yuan, Z,M., Nielsen-LeRoux, C., and Zhang, Y.M., 1999a, Properties and toxicities of a Bacillus thuringiensis subsp. israelensis recombinant containing the binary toxin gene, J. Microbiol. 19: 1–5 (In Chinese).Google Scholar
  185. Yuan, Z.M., Rang, C., Maroon, R.C., Juarez-Perez, V., Fritos, R., Pasteur, N., Vend Rely, V., Charles, J.F., and NielsenLeRoux, C., 2001, Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin, Eur. J. Biochem. 268: 2751–2760.PubMedCrossRefGoogle Scholar
  186. Yuan, Z.M., Nielsen-LeRoux, C., Pasteur, N., Charles, J.F., and Frutos, F., 1998, Detection of binary toxin genes of several Bacillus sphaericus strains and their toxicities against susceptible and resistant Culex pipiens, Acta Entomologica Sinica 41:337–342 (In Chinese).Google Scholar
  187. Yuan, Z.M., Nielsen-LeRoux, C., Pasteur, N., Charles, J.F., and Frutos, F., 1999b, Cloning and expression of binary toxin gene of Bacillus sphaericus C3–41 in crystal-minus B. thuringiensis subsp. israelensis, Acta Microbiologica Sinica 39:35–41 (In Chinese).Google Scholar
  188. Yuan, Z.M., Chen, Z.S., and Zhang, Y.M., 1992, Efficacy ofBacillus sphaericus C3–41 against Culex quinquefasciatus and its recycling in cadavers, Acta Entomologica Sinica 37:404–410 (In Chinese).Google Scholar
  189. Yuan, Z.M., Zhang, Y. M., Liu, E.Y., Cai Q.X., and Pang, Y., 2000, High-level field resistance to Bacillus sphaericus C3–41 in Culex quinquefasciatus from Southern China, Biocontrol Sci. Techno. 40: 43–51.Google Scholar
  190. Zeze, G.D., Donnie, J.M., Disso-Yoyo, J., Riviera F., and Chauvin, G., 1996, Evaluation of the efficacy of Bacillus sphaericus Need 1904 applied to previously cleaned gutters for Culex quinquefasciatus Say 1823 control in Abidjan (Cote d’Ivoire), Bull. Soc. Pathol. Exit. 89: 220–226.Google Scholar
  191. Zhang, Y.M., Cai, C.J., Liu, E.Y., Chen, Z.S., 1989a, Effects of Bacillus sphaericus C3–41 Mosquito-Larvicidal Formulation in field, Disinsectional Microorganism 2: 43–46.Google Scholar
  192. Zhang, Y.M., Cai, C.J., Liu, E.Y., Chen, Z.S., and Yan, J.P., 1989b, Affecting factors and evaluation of Bacillus sphaericus formulation on controlling mosquito larvae in fields, Chinese J Epidemiol. 10: 20–25.Google Scholar
  193. Zhang, Y.M., Chen, Z.S., Cai, C.J., and Yuan, Z.M., 1994, Larvicidal activity of Bacillus sphaericus C3–41 flowable concentrates against larvae of Anopheles and An. dirus, Chinese J. Vector Biological Control 5: 168–170.Google Scholar
  194. Zhang, Y.M., Liu, E.Y., Cai, C.J., and Chen Z.S., 1989, Effectiveness ofBacillus sphaericus C3–41 flowable formulation on controlling the Aedes albopictus larvae, Chinese J. Epidemiol. 10: 43–44.Google Scholar
  195. Zhang, Y.M., Liu, E.Y., Dai, S.Y., Yan, J.P., and Luo, S.B., 1987, Isolation of two strains of Bacillus sphaericus possessing high toxicity to Culex quinquefasciatus, Disinsectional Microorganism 1: 98–101.Google Scholar
  196. Zhou, Z.H., Zhang, Y.M., and Liu, E.Y., 1993, Extraction and homogeny of larvicidal toxin in Bacillus sphaericus C3–41, Acta Microbiologica Sinica 33: 354–360.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Zhiming Yuan
    • 1
  1. 1.Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations