Advertisement

Dynamics of Dendritic Growth Interacting with Convective Flow

Global Instabilities And Limiting State Selection
  • Jian-Jun Xu
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 1)

Abstract

Dendritic gorwth from under cooled melt is a fascinating, common phenomenon in crystal growth. It is also one of the most profound nonlinear pattern formation phenomena in complex dynamic systems far away from the equilibrium state. The essence and origin of dendritic structure formation; the selection of the limiting state of dendritic growth system have been the fundamental, key issues in the broad areas of material science and condensed matter physics for many years. These issues are now well understood on the basis of the so-called Interfacial Wave (IFW) theory. Dynamics of dendritic growth is an interdisciplinary subject. A realistic dendritic growth system unavoidably involves convective flow in the melt. The interplay between growth dynamics and fluid dynamics has been the subject of great significance and interest in the areas of material science, solidification physics, fluid mechanics and applied mathematics.

In this review article, I attempt to introduce this exciting, interdisciplinary subject to the readers in the broad areas of Mechanics and Mathematics. The article begins with the description of macroscopic, continuum approach for general solidification problems and a brief review on the IFW theory for typical dendritic growth without convective flow. This provides the readers with all the necessary background. The main body of the article is devoted to a systematic study of the interactive dynamics of dendritic growth with various types of convective flow in melt. In particular, it explores the effect of convection on the global stability and selection of pattern formation of the system.

Keywords

Dendritic growth convective flow interfacial wave theory selection mechanism of the limiting state global instability free boundary problem singular perturbations multiple variables asymptotic expansion. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitz, M. and Stegun, I.A. (1964). Handbook of Mathematical Functions. National Bureau of Standards.Google Scholar
  2. Amar, M. Ben, Bouissou, Ph., and Pelce, P. (1988). An exact solution for the shape of a crystal growing in a forced flow. Journal of Crystal Growth, 92: 97–100.CrossRefGoogle Scholar
  3. Ananth, R. and Gill, W. N. (1989). Dendritic growth of an elliptical paraboloid with forced convection in the melt. J. Fluid Mech., 208: 575–593.ADSCrossRefGoogle Scholar
  4. Ananth, R. and Gill, W. N. (1991). Self-consistent theory of dendritic growth with convection. J. Crystal Growth, 108: 173–189.ADSCrossRefGoogle Scholar
  5. Bender, C. M. and Orszag, S. A. (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.zbMATHGoogle Scholar
  6. Bouissou, P., Chiffaudel, A., Perrin, B., and Tabelling, P. (1990). Dendritic sideranching forced by an external flow. Europhys. Lett., 13: 89–94.ADSCrossRefGoogle Scholar
  7. Bouissou, P., Perrin, B., and Pelce, P. (1989). Influence of an external flow on dendritic growth. Phys. Rev., A, 40: 509–512.ADSCrossRefGoogle Scholar
  8. Bouissou, Ph. and Pelce, R (1989). Effect of a forced flow on dendritic growth. Phys. Rev. A, 40: 6637–6680.Google Scholar
  9. Canright, D. and Davis, S. H. (1991). Buoyancy effect of a growing, isolated dendrite. J. Crystal Growth, 114: 153–185.ADSCrossRefGoogle Scholar
  10. Davis, R.T. (1972). Numerical solution of the navier-stokes equation for symmetric laminar incompressible flow past a parabola. J. Fluid Mech., 51: 417433.Google Scholar
  11. Davis, R.T. and Werle, M.J. (1972). Numerical solution for laminar incom- pressible flow past a paraboloid of revolution. AIAA J., 10: 1224–1230.ADSzbMATHCrossRefGoogle Scholar
  12. Dennis, S.C.R. and Warsh, J.D. (1971). Numerical solution for steady symmetric viscous flow past a parabolic cylinder in a uniform stream. J. Fluid Mech., 48: 771–789.ADSzbMATHCrossRefGoogle Scholar
  13. Dougherty, A. and Gollub, J. P. (1988). Steady-state dendritic growth of nh4br from solution. Phys. Rev. A, 38: 3043–3053.ADSCrossRefGoogle Scholar
  14. Dyke, Milton Van (1975). Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford, California.Google Scholar
  15. Emsellem, V. and Tabeling, R (1995). Experimental study of dendritic growth with an external flow. J. Crystal Growth, 156: 285–295.ADSCrossRefGoogle Scholar
  16. Emsellem, V. and Tabeling, P. (1996). On the role of convection in free dendritic growth: Experimental measurement of the concentration field. J. Crystal Growth, 166: 251–255.ADSCrossRefGoogle Scholar
  17. Glicksman, M. E., Koss, M. B., Bushnell, L. T., Lacombe, J. C., and Winsa, E. A. (1995). Dendritic growth of succinonitrile in terrestrial and microgravity conditions as a test of theory. ISIJ International, 35, No: 6: 604–610.Google Scholar
  18. Glicksman, M. E., Koss, M. B., and Winsa, E. A. (1994). Dendritic growth velocities in microgravity. Phy. Rev. Let., 73, No: 4: 573–576.CrossRefGoogle Scholar
  19. Glicksman, M. E., Schaefer, R. J., and Ayers, J. D. (1975). High-confidence measurement of solid/liquid surface energy in a pure material. Philosophical Magazine, 32: 725–743.ADSCrossRefGoogle Scholar
  20. Glicksman, M. E., Schaefer, R. J., and Ayers, J. D. (1976). Dendrite growth — a test of theory. Metall. Trans., 7A: 1747–1757.CrossRefGoogle Scholar
  21. Gradshtreyn, I.S. and Ryzhik, I.M. (1980). Table of Integrals, Series, and Products (Corrected and Enlarged Edition).Google Scholar
  22. Horvay, G. and Cahn, J. W. (1961). Dendritic and spheroidal growth. Acta Metall., 9: 695–705.CrossRefGoogle Scholar
  23. Huang, S.C. and Glicksman, M. E. (1981). Fundamentals of dendritic solidification — (i). steady–state tip growth; (ii). development of sidebranch structure. Acta Metall., 29: 701–734.CrossRefGoogle Scholar
  24. Hurle, D. T. J., editor (1993). Handbook of Crystal Growth, Vol. 1: Fundamentals, Part B: Transport and Stability. Elservier Science, North–Holland, Amsterdam.Google Scholar
  25. Ivantsov, G. P. (1947). Temperature field around a spheroidal, cylindrical and acicular crystal growing in a supercooled melt. Dokl. Akad. Nauk, SSSR., 58, No: 4: 567–569.Google Scholar
  26. Kessler, D. A., Koplik, J., and Levine, H. (1986). Pattern formation far from equilibrium: the free space dendritic crystal growth. In Patterns, Defects and Microstructures in Non-equilibrium Systems. NATO A.R.W., Austin, TX.Google Scholar
  27. Kevorkian, J. and Cole, J. D. (1996). Multiple Scale and Singular Perturbation Methods, Applied Mathematical Sciences, Vol. 114. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  28. Kobayashi, T. and Furukawa, Y. (1991). Snow crystals. Snow Crystal Museum Asahikawa, Hokkaido.Google Scholar
  29. Koo, K. K., Ananth, R., and Gill, W. N. (1992). Thermal convection, morphological stability and the dendritic growth of crystals. AIChE Journal, 38, No: 6: 945–954.CrossRefGoogle Scholar
  30. Kruskal, M. and Segur, H. (1991). Asymptotics beyond all orders in a model of crystal growth. Stud. in Appl. Math, No: 85:129–181.Google Scholar
  31. Langer, J. S. (1980). Instability and pattern formation in crystal growth. Rev. Mod. Phys, 25: 1–28.ADSCrossRefGoogle Scholar
  32. Langer, J. S. (1986). Lectures in the Theory of Pattern Formation, USMG NATO AS Les Houches Session XLVI 1986 — Le hasard et la matiere/chance and matter. Ed. by J. Souletie, J. Vannimenus and R. Stora. Elsevier Science, Amsterdam.Google Scholar
  33. Langer, J. S. (1992). Issues and opportunities in materials research. Physics Today, pages 24–31.Google Scholar
  34. Langer, J. S. and Müller-Krumbhaar, H. (1978). Theory of dendritic growth–(i). elements of a stability analysis; (ii). instabilities in the limit of vanishing surface tension; (iii). effects of surface tension. Acta Metall, 26: 1681–1708.CrossRefGoogle Scholar
  35. Lee, Y-W. (1991). Pattern Formation and Convective Heat Transfer during Dendritic Crystal Growth. PhD dissertation, Rensselaer Polytechnic Institute, Troy, NY.Google Scholar
  36. Lee, Y-W., Gill, W., and Ananth, R. (1992). Forced convection heat transfer during dendritic crystal growth: Local solution of navier-stokes equations. Chem. Eng. Comm., 116: 193–200.CrossRefGoogle Scholar
  37. Lee, Y-W., Gill, W., and Ananth, R. (1992). Forced convection heat transfer during dendritic crystal growth: Local solution of navier-stokes equations. Chem. Eng. Comm., 116: 193–200.CrossRefGoogle Scholar
  38. Lee, Y-W., Smith, R. N., Glicksman, M. E., and Koss, M. B. (1996). Effects of buoyancy on the growth of dendritic crystals. Annual Review of Heat Transfer, 7: 59–139.CrossRefGoogle Scholar
  39. Lin, C. C. (1955). The Theory of Hydrodynamic Stability. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  40. Lin, C. C. and Lau, Y. Y. (1979). Density wave theory of spiral structure of galaxies. Studies In Applied Mathematics, 60: 97–163.MathSciNetADSGoogle Scholar
  41. McFadden, G.B. and Coriell, S.R. (1986). The effect of fluid flow due to the crystal-melt density change on the growth of a parabolic isothermal dendrite. Journal of Crystal Growth, 74: 507–512.ADSCrossRefGoogle Scholar
  42. Mullins, W. W. and Sekerka, R. F. (1963). Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys., 34: 323–329.ADSCrossRefGoogle Scholar
  43. Mullins, W. W. and Sekerka, R. F. (1964). Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys., 345: 444–451.ADSCrossRefGoogle Scholar
  44. Nash, G. E. and Glicksman, M. E. (1974). Capillarity-limited steady-state dendritic growth (i). theoretical development. Acta Metall., 22: 1283–1299.CrossRefGoogle Scholar
  45. Oseen, C.W. (1910). Ueber die stokes’sche formel and über eine verwandie aufgabe in der hydrodynamik. Ark. Matj. Astronom. Fys., 6:No: 29.Google Scholar
  46. Pelee, P. (1988). Dynamics of Curved Front. Academic, New York.Google Scholar
  47. Pines, V., Chait, A., and Zlatkowski, M. (1996). Anomaly in dendritic growth data-effect of density change upon solidification. J. Crystal Growth, 169: 798–802.ADSCrossRefGoogle Scholar
  48. Saville, D. A. and Beaghton, P. J. (1988). Growth of needle-shaped crystals in the presence of convection. Phys. Rev A, 37: 3423–3430.ADSCrossRefGoogle Scholar
  49. Sekerka, R. F., Coriell, S. R., and McFadden, G. B. (1995). Stagnation film model of the effect of natural convection on dendritic operating state. J. Crystal Growth, 154: 370–376.ADSCrossRefGoogle Scholar
  50. Sekerka, R. F., Coriell, S. R., and McFadden, G. B. (1996). The effect of container size on dendritic growth in microgravity. J. Crystal Growth, 171: 303–306.CrossRefGoogle Scholar
  51. Stokes, G. G. (1851). On the effect of internal friction of fluids on motion of pendulums. Trans. Camb. Phil. Soc. (Reprinted: Math. and Phys. Papers 3 pp. 1–141, Cambridge Univ. Press), 9, Part II: 8–106.Google Scholar
  52. Takahashi, K., Furukawa, Y., and Takahashi, Y. (1995). Story of snow crystals. Koudansya, Tokyo.Google Scholar
  53. Verdman, A. E. P. (1973). The numerical solution of the navier-stokes equation for laminar incompressible flow past a paraboloid of revolution. Computers and Fluids, 1: 251–271.CrossRefGoogle Scholar
  54. Wilkinson, J. (1955). A note on the oseen approximation for a paraboloid in a uniform stream parallel to its axis. Quart. Journ. Mech. and Applied Math., VIII, Pt. 4: 415–421.Google Scholar
  55. Xu, J. J. (1987). Global asymptotic solution for axi-symmetric dendrite growth with small undercooling. In Structure and Dynamics of Partially Solidified System, pages 97–109. Ed. by D.E. Loper, NATO ASI Series E. No. 125.Google Scholar
  56. Xu, J. J. (1989). Interfacial wave theory for dendritic structure of a growing needle crystal (i): Local instability mechanism; (ii): Wave-emission mechanism at the turning point. Phys. Rev. A, 40, No. 3: 1599–1614.ADSCrossRefGoogle Scholar
  57. Xu, J. J. (1990). Asymptotic theory of steady axisymmetric needle-like crystal growth. Studies in Applied Mathematics, 82: 71–91.MathSciNetADSzbMATHGoogle Scholar
  58. Xu, J. J. (1990). Global neutral stable state and selection condition of tip growth velocity. J. Crystal Growth, 100: 481–490.ADSCrossRefGoogle Scholar
  59. Xu, J. J. (1991). Interfacial wave theory of solidification–dendritic pattern formation and selection of tip velocity. Phys. Rev. A15, 43, No: 2: 930–947.ADSCrossRefGoogle Scholar
  60. Xu, J. J. (1991). Two-dimensional dendritic growth with anisotropy of surface tension. Physics (D), 51: 579–595.zbMATHGoogle Scholar
  61. Xu, J. J. (1994). Dendritic growth from a melt in an external flow: Uniformly valid asymptotic solution for the steady state. J. Fluid Mech., 263: 227–243.MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. Xu, J. J. (1994). Effect of convection motion in melt induced by density-change on dendritic solidification. Canad. J. Phys., 72, No: 3 and 4: 120–125.ADSGoogle Scholar
  63. Xu, J. J. (1996). Generalized needle solutions, interfacial instabilities and pattern formations. Phys. Rev. E, 53 No: 5: 5051–5062.ADSCrossRefGoogle Scholar
  64. Xu, J. J. (1997). Interfacial Wave Theory of Pattern Formation: Selection of Dendrite Growth and Viscous Fingering in a Hele-Shaw Flow. Springer-Verlag Publisher.Google Scholar
  65. Xu, J. J. and Yu, D. S. (1998). Regular perturbation expansion solution for generalized needle crystal growth. Journal of Crystal Growth, 187: 314–326.ADSCrossRefGoogle Scholar
  66. Xu, J. J. and Yu, D. S. (2001). Further examinations of dendrite growth theories. J. of Crystal Growth, 222: 399–413.ADSCrossRefGoogle Scholar
  67. Xu, J. J. and Yu, D. S. (200l). Selection and resonance of dendrite growth with interference of oscillatory external sources. J. of Crystal Growth, 226: 378–392.Google Scholar
  68. Yu, D. S. and Xu, J. J. (1999). Dendrite growth in external flow: The selection of tip velocity. J. of Crystal Growth, 198, No: 49: 49–55.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Jian-Jun Xu
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations