Skip to main content

Intercellular Collisions and Their Effect on Microcirculatory Transport

  • Chapter
Advances in Cardiovascular Engineering

Part of the book series: NATO ASI Series ((NSSA,volume 235))

Abstract

Shear-induced interactions between cells in flowing blood are involved in several important phenomena, such as the formation of aggregates, the dispersion of plasma and cells within vessels, the enhanced collision of cells with each other and the vessel wall, and changes in the distribution of cells within the vessels. This paper is concerned with an analysis of such interactions, particularly as they occur in small vessels. In order to better understand the phenomena, we begin by describing the simplest interaction, that of a two-body collision between spherical particles, and how fluid mechanical and colloid chemical theories applied to such collisions can be used to better understand interactions between red cells and between platelets. The effects of two-body collisions on particle trajectories are described, before proceeding to consider multi-body interactions in model suspensions and in blood, where the red cells exercise a considerable influence on platelet and white cell flow behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J.K. Lin, J. Lee, and N.F. Sather, Slow motion of two spheres in a shear field, J. Fluid Mech. 43: 35 (1970).

    Article  Google Scholar 

  2. G.K Batchelor, and J.T. Green, The hydrodynamic interaction of two small freely moving spheres in a linear flow field, J. Fluid Mech. 56: 375 (1972).

    Article  Google Scholar 

  3. P.A. Arp, and S.G. Mason, The kinetics of flowing dispersions. VIII. Doublets of rigid spheres (theoretical), J. Colloid Interface Sci. 61: 21 (1977).

    Article  CAS  Google Scholar 

  4. T.G.M. van de Ven, and S.G. Mason, The microrheology of colloidal dispersions. IV. Pairs of interacting spheres in shear flow, J. Colloid Interface Sci. 57: 517 (1976).

    Article  Google Scholar 

  5. P.F. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech. 14: 284 (1962).

    Article  Google Scholar 

  6. S.P. Tha, and H.L. Goldsmith, Interaction forces between red cells agglutinated by antibody. I. Theoretical, Biophys. J. 50: 1109 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. K. Takamura, H.L. Goldsmith, and S.G. Mason, The microrheology of colloidal dispersions. IX. Effects of simple and polyelectrolytes on rotation of doublets of spheres, J. Colloid Interface Sci. 72: 385 (1979).

    Article  CAS  Google Scholar 

  8. K. Takamura, H.L. Goldsmith, and S.G. Mason, The microrheology of colloidal dispersions. XI. Trajectories of orthokinetic pair-collisions of latex spheres in a simple electrolyte, J. Colloid Interface Sci. 82: 175 (1981).

    Article  CAS  Google Scholar 

  9. R.St.J. Manley, and S.G. Mason, Particle motions in sheared suspensions. II. Collisions of uniform spheres, J. Colloid Sci. 7: 354 (1962).

    Article  Google Scholar 

  10. H.L. Goldsmith, and S.G. Mason, The flow of suspensions through tubes. III. Collisions of small uniform spheres, Proc. Roy. Soc. (London) A282: 569 (1964).

    Article  Google Scholar 

  11. B.V. Derjaguin, and L.D. Landau, Acta Physicochim. URSS 14: 633 (1941)

    Google Scholar 

  12. E.G. Verwey, and J.Th.G. Overbeek, “Theory of the Stability of Lyophobic Colloids,” Elsevier Scient. Publ. Co., Amsterdam (1948).

    Google Scholar 

  13. T.G.M. van de Ven, “Colloidal Hydrodynamics,” Academic Press, New York (1989).

    Google Scholar 

  14. G.B. Jeffery, On the motion of ellipsoidal particles immersed in a viscous fluid, Proc. Roy. Soc. London A 102: 161 (1922).

    Article  Google Scholar 

  15. K. Takamura, P. Adler, H.L. Goldsmith, and S.G. Mason, Particle motions in sheared suspensions. XXXI. Rotations of rigid and flexible dumbbells (experimental), J. Colloid Interface Sci. 83: 516 (1981).

    Article  CAS  Google Scholar 

  16. K. Takamura, H.L. Goldsmith, and S.G. Mason, The microrheology of colloidal dispersions. XI. Trajectories of orthokinetic pair-collisions of latex spheres in a cationic polyelectrolyte, J. Colloid Interface Sci. 82: 190 (1981).

    Article  CAS  Google Scholar 

  17. H. Brenner, and M.E. O’Neill, On the Stokes resistance of multiparticle systems in a linear shear field, Chem. Eng. Sci. 27: 1421 (1972).

    Article  CAS  Google Scholar 

  18. S.P. Tha, J. Shuster, and H.L. Goldsmith, Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup, Biophys. J. 50: 1117 (1986).

    Google Scholar 

  19. H. L. Goldsmith, O. Coenen, and C. Timm, Measurement of the adhesion force between human red cells agglutinated by monoclonal antibody, Biorheology 26: 564 (1989)

    Google Scholar 

  20. G.I. Bell, Models for the specific adhesion of cells to cells, Science 200: 618 (1978)

    Article  PubMed  CAS  Google Scholar 

  21. D.F. Tees, and H.L. Goldsmith, Stochastic nature of the adhesion force between doublets of human red cells cross-linked by monoclonal antibody, 5th World Congress for Microcirculation, Louisville, KY (1991).

    Google Scholar 

  22. E.A. Evans, Detachment of agglutinin-bonded red blood cells, Biophys. J. 59: 838 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. T.G.M. van de Ven, and S.G. Mason, The microrheology of colloidal dispersions. VII. Orthokinetic doublet formation of spheres, Colloid Polymer Sci. 255: 468 (1977).

    Article  Google Scholar 

  24. M. von. Smoluchowski, Versuch einer Mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chem. 92: 129 (1917).

    Google Scholar 

  25. D.L. Swift, and S.K. Friedlander, The coagulation of hydrosols by Brownian motion and laminar shear flow, J. Colloid Sci. 19: 621 (1964).

    Article  Google Scholar 

  26. A.S.C. Curtis, and L.M. Hocking, Collision efficiency of equal spherical particles in a shear field, Trans. Faraday Soc. 66: 1381 (1970).

    Article  CAS  Google Scholar 

  27. G.R. Zeichner, and W.R. Schowalter, Effects of hydrodynamic and colloid forces on the coagulation of dispersions, J. Colloid Interface Sci. 71: 237 (1979).

    Article  CAS  Google Scholar 

  28. H.L. Goldsmith, O. Lichtarge, M. Tessier-Lavigne, and S. Spain, Some model experiments in hemodynamics. VI. Two-body collisions between blood cells, Biorheology 18: 531 (1981).

    PubMed  CAS  Google Scholar 

  29. V.A. Parsegian, and D. Gingell, Some features of physical forces between biological membranes, J. Adhesion 4: 283 (1972).

    Article  CAS  Google Scholar 

  30. G.V.F. Seaman, Electrokinetic behavior of red cells, in: “The Red Blood Cell,”, Vol. II, D. Mac N. Surgenor, ed., Academic Press, New York (1975).

    Google Scholar 

  31. S. Levine, M. Levine, K.A. Sharp, and D.E. Brooks, Theory of electrokinetic behavior of erythrocytes, Biophys. J. 42: 127 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. D.N. Bell, S. Spain, and H.L. Goldsmith, The ADP-induced aggregation of human platelets in flow through tubes. I. Measurement of the concentration, size of single platelets and aggregates, Biophys. J. 56: 817, (1989).

    Article  PubMed  CAS  Google Scholar 

  33. D.N. Bell, S. Spain, and H.L. Goldsmith, The ADP-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex and ADP concentration, Biophys. J. 56: 817, (1989).

    Article  PubMed  CAS  Google Scholar 

  34. D.N. Bell, S. Spain, and H.L. Goldsmith, Extracellular Cat+ accounts for the sex difference in the aggregation of human platelets in citrated platelet-rich plasma, Thromb. Res. 58: 47 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. D.N. Bell, S. Spain, and H.L. Goldsmith, The effect of red cells on the ADP-induced aggregation of human platelets in flow through tubes, Thromb. Haemost. 63: 112 (1990).

    PubMed  CAS  Google Scholar 

  36. H.L. Goldsmith, and V.T. Turitto, Rheological aspects of thrombosis and haemostasis. Basic principles and applications, Thromb. Haemost. 55: 415 (1986).

    PubMed  CAS  Google Scholar 

  37. D.N. Bell, Physical factors governing the aggregation of human platelets in flow through tubes. Ph.D. Thesis, McGill University (1988).

    Google Scholar 

  38. D.N. Bell, and H.L. Goldsmith, Platelet aggregation in Poiseuille flow. II. Effects of shear rate, Microvasc. Res. 27: 316 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. M.M. Frojmovic, K.A. Longmire, and T.G.M. van de Ven, Long-range interactions in mammalian platelet aggregation. II. The role of platelet pseudopod number and length, Biophys. J. 58: 309 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. L. Leung, and R. Nachman, Molecular mechanisms of platelet aggregation, Ann. Rev. Med. 37: 179 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. A.T. Nurden, Platelet membrane glycoproteins and their clinical aspects, in: “Thrombosis and Haemostasis,” M. Verstraete, J. Vermylen, R. Lijnen, and J. Amout, eds., Leuven University Press, Leuven, Belgium (1987).

    Google Scholar 

  42. E.I. Peerschke, M.B. Zucker, R.A. Grant, J.J. Egan, and M.M. Johnson, Correlation between fibrinogen binding for human platelet and platelet aggregability, Blood 55: 841 (1980).

    PubMed  CAS  Google Scholar 

  43. G.A. Margerie, G.S. Edgington, and E.F. Plow, Interaction of fibrinogen with its receptor as part of a multistep reaction in ADP-induced platelet aggregation, J. Biol. Chem. 255: 154 (1980).

    Google Scholar 

  44. M. Kloczewiak, S. Timmons, T.J. Lukas, and J. Hawiger, Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the y chain. Biochem. 23: 1767 (1984).

    Article  CAS  Google Scholar 

  45. S.A. Santoro, and W.J. Lawing, Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins, Cell 48: 867 (1987).

    Article  PubMed  CAS  Google Scholar 

  46. A.S. Aasch, L.K. Leung, M.J. Polley, and R.L. Nachman, Platelet membrane topography: colocalization of thrombospondin and fibrinogen with glycoprotein IIb-IIIa complex, Blood 66: 926 (1985).

    Google Scholar 

  47. P.J. Newman, R.P. McEver, M.P. Doers, and T.S. Kunicki, Synergistic action of two murine monoclonal antibodies that inhibit ADP-induced platelet aggregation without blocking fibrinogen binding, Blood 69: 668 (1987).

    PubMed  CAS  Google Scholar 

  48. B.S. Coller, Biochemical and electrostatic considerations in primary platelet aggregation, Ann. N.Y. Acad. Sci. 416: 693 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. V.T. Turitto, A.M. Benis, and E.F. Leonard, Platelet diffusion in flowing blood, Ind. Eng. Chem. Fundam. 11: 216 (1972).

    Article  CAS  Google Scholar 

  50. H.L. Goldsmith, Red cell motions and wall interactions in tube flow, Fed Proc. 30: 1578 (1588).

    Google Scholar 

  51. H.L. Goldsmith, and J. Marlow, Flow behavior of erythrocytes. II. Particle motions in sheared suspensions of ghost cells, J. Colloid Interface Sci. 71: 383 (1979).

    Article  Google Scholar 

  52. H.L. Goldsmith and S.G. Mason, The microrheology of dispersions, in: “Rheology: Theory and Applications,” Volume IV, F.R. Eirich, ed., Academic Press, New York (1967).

    Google Scholar 

  53. G.J. Tangelder, H.C. Teirlinck, D.W. Slaaf, and R.S. Reneman, Distribution of blood platelets in flowing arterioles, Am. J. Physiol. (Heart Circ. Physiol.) 248: H318 (1985).

    CAS  Google Scholar 

  54. H.J. Reimers, S.P. Sutera, and J.H. Joist, Potentiation by red cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms, Blood 64: 1200 (1984).

    PubMed  CAS  Google Scholar 

  55. V.T. Turitto, and H. Baumgärtner, Platelet interaction with subendothelium in a perfusion system: physical role of red cells, Microvasc. Res. 9: 335 (1975).

    Article  PubMed  CAS  Google Scholar 

  56. V.T. Turitto, and H.J. Weiss, Red cells: their dual role in thrombus formation, Science 207: 541 (1980).

    Article  PubMed  CAS  Google Scholar 

  57. E.F. Grabowski, L.I. Friedman, and E.F. Leonard, Effects of shear rate on the diffusion and adhesion of blood platelets to a foreign surface, Ind. Eng. Chem. Fund 11:224 (1972).

    Google Scholar 

  58. I.A. Feuerstein, B.M. Brophy, and J.L. Brash, Platelet transport and adhesion to reconstituted collagen and artificial surfaces, Trans. Am. Soc. Artif. Intern. Organs 21: 427 (1975).

    PubMed  CAS  Google Scholar 

  59. T. Karino and H.L. Goldsmith, Rheological factors in thrombosis and haemostasis, in: “Haemostasis and Thrombosis,” A.L. Bloom and D.P. Thomas, eds., Churchill Livingstone, London, England (1986).

    Google Scholar 

  60. V.T. Turitto, Viscosity, transport and thrombogenesis, in: “Progress in Hemostasis and Thrombosis,” Volume 6, T.H. Spaet, ed., Grune Stratton, New York (1982).

    Google Scholar 

  61. N.H. Wang, and K.H. Keller, Solute transport induced by erythrocyte motions in shear flow, Trans. Am. Soc. Artif. Intern. Organs 25: 14 (1979).

    Article  PubMed  CAS  Google Scholar 

  62. P.A. Aarts, P.A. Bolhuis, K.S. Sakariassen, R.M. Heethar, and J.J. Sixma, Red blood cell size is important for adhesion of blood platelets to artery subendothelium, Blood 62: 214 (1983).

    PubMed  CAS  Google Scholar 

  63. A.L. Zydney, and CK. Colton, Augmented solute transport in the shear flow of a concentrated suspension, Physico Chem. Hydrodyn. 10: 77 (1988).

    CAS  Google Scholar 

  64. P.A. Aarts, S.A.T. van den Broek, G.W. Prins, G.D.C. Kuiken, J.J. Sixma, and R.M. Heethar, Blood platelets are concentrated near the wall and red cells in the center in flowing blood, Arteriosclerosis 8: 819 (1988).

    Article  PubMed  CAS  Google Scholar 

  65. K.D. Sparks, Platelet concentration profiles in blood flow through capillary tubes, M.Sc. thesis, University of Miami, Coral Gables, FL (1983).

    Google Scholar 

  66. A.W. Tilles, and E.C. Eckstein, The near-wall excess of platelet-sized particles in blood flow: Its dependence on hematocrit and wall shear rate, Microvasc. Res. 33: 211 (1987).

    Article  PubMed  CAS  Google Scholar 

  67. E.C. Eckstein, A.W. Tilles, and F.J. Millero, Conditions for the occurrence of large near-wall excess of small particles during blood flow, Microvasc. Res. 36: 31 (1988).

    Article  PubMed  CAS  Google Scholar 

  68. D.L. Bilsker, C.M. Waters, J.S. Kippenham, and E.C. Eckstein, A freeze capture method for the study of platelet-sized particle distribution, Biorheology 26: 1031 (1989).

    PubMed  CAS  Google Scholar 

  69. E.C. Eckstein, and F. Belgacem, Models of platelet transport in flowing blood with drift and diffusion terms, Biophys. J. 60: 53 (1990).

    Article  Google Scholar 

  70. R.H. Phibbs, Orientation and distribution of erythrocytes in blood flowing through medium-sized arteries, in: “Hemorheology: Proceedings of the 1st International Conference,” A.L. Copley, ed., Pergamon Press, New York (1967).

    Google Scholar 

  71. G. Bugliarello, and J. Sevilla, Velocity distributions and other characteristics of steady and pulsatile flow in fine glass tubes, Biorheology 7: 85 (1970).

    PubMed  CAS  Google Scholar 

  72. F. Seitz, On the theory of vacancy diffusion in alloys, Phys. Rev. 74: 1513 (1948).

    Article  CAS  Google Scholar 

  73. G. Vejlens, The distribution of leukocytes in the vascular system, Acta Pathol. Microbiol. Scand. Suppl. 33: 11 (1938).

    Google Scholar 

  74. V. Nobis, A.R. Pries and P. Gaehtgens, Rheological mechanisms contributing to WBC-margination, in: “White Blood Cells: Morphology and Rheology Related to Function”, U. Bagge, G.V.R. Born, and P. Gaehtgens, eds., Martinus Nijhoff, The Hague (1982).

    Google Scholar 

  75. H.L. Goldsmith, and S. Spain, Margination of leucocytes in blood flow through small tubes, Microvasc. Res. 28: 204 (1984).

    Article  Google Scholar 

  76. H.L. Goldsmith, G.R. Cokelet, and P. Gaehtgens, Robin Führaeus, 15–10–1888 to 18–08–1968: The evolution of his concepts in Cardiovascular Physiology. Am. J. Physiol. 257:(Heart Circ. Physiol. 26) H1005 (1989).

    Google Scholar 

  77. H.L. Goldsmith and S. Spain, Radial distribution of white cells in tube flow, in: “White Cell Mechanics: Basic Science and Clinical Aspects,” H.J. Meiselman, M. Lichtman, and P.L. LaCelle, eds., Alan R. Liss, New York (1984).

    Google Scholar 

  78. R. Fähraeus, The influence of the rouleau formation on the erythrocytes on the rheology of the blood, Acta Med. Scand. 161: 151 (1958).

    Article  PubMed  Google Scholar 

  79. H.J. Meiselman, Some physical and rheological properties of human blood, D.Sc. thesis, Massachusetts Institute of Technology, Cambridge, MA (1964).

    Google Scholar 

  80. A.A. Palmer, and H.J. Jedrzejczyk, The influence of rouleaux on the resistance to flow through capillary channels at various shear rates, Biorheology 12: 265 (1975).

    PubMed  CAS  Google Scholar 

  81. W. Reinke, P. Gaehtgens, and P.C. Johnson, Blood viscosity in small tubes: Effect of shear rate, aggregation and sedimentation, Am. J. Physiol. 253(Heart Circ. Physiol. 22):H540 (1987).

    Google Scholar 

  82. B. Shizgal, H.L. Goldsmith, and S.G. Mason, The flow of suspensions through tubes. IV. Oscillatory flow of rigid spheres, Can. J. Chem. Eng. 43: 97 (1965).

    Article  CAS  Google Scholar 

  83. A. Kamis, H.L. Goldsmith, and S.G. Mason, The flow of suspensions through tubes. V. Inertial effects. Can. J. Chem. Eng. 44: 181 (1966).

    Article  Google Scholar 

  84. G.R. Cokelet, and H.L. Goldsmith, Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rate, Circ. Res. 68: 1 (1991).

    Article  PubMed  CAS  Google Scholar 

  85. M.H. Knisely, Intravascular erythrocyte aggregation (blood sludge), in:: “Handbook of Physiology,” Section 2: Circulation, Vol. III, E.M. Renkin and C.C. Michel, eds., American Physiological Society, Bethesda, MD (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldsmith, H.L. (1992). Intercellular Collisions and Their Effect on Microcirculatory Transport. In: Hwang, N.H.C., Turitto, V.T., Yen, M.R.T. (eds) Advances in Cardiovascular Engineering. NATO ASI Series, vol 235. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4421-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4421-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3228-0

  • Online ISBN: 978-1-4757-4421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics