Skip to main content

Laser Measurements in Cardiovascular Flow Dynamics Research

  • Chapter
Advances in Cardiovascular Engineering

Part of the book series: NATO ASI Series ((NSSA,volume 235))

  • 103 Accesses

Abstract

Flow dynamic measurement in cardiovascular systems usually refers to the measurement of the time dependent pressure, blood flow velocity, and the volumetric flow rates. Generally, flow dynamic measurements in cardiovascular systems are rather difficult. This is not only because that the flow is basically unsteady, but also the physical frame of reference is always moving. During the past decades, various types of flow measurement instruments have been designed and developed. Among which, laser Doppler anemometer (LDA) has been one of the most favorite tool in laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gordon EI: A review of acousto-optical deflection and modulation devices, Proc. IEEE, 54: 1391–401, 1966.

    Article  Google Scholar 

  2. Wang SK, Guo XM, Shi SX: Optic-electro-modulation feedback laser Doppler anemometer, Chinese patent No. 85–108397, 1985.

    Google Scholar 

  3. Guo XM, Wang SK, Liu CW, Hwang NHC: A new LDA system utilizing the optic-electro-hybrid feedback technique, J. of Physics E., Meas. Sci. Technol., 1: 265–271, 1990.

    Article  Google Scholar 

  4. Hwang NHC, Lu PC, Sallam AM: Measurements of turbulence in aortic valve prostheses, In: Prosthetic Heart Valves (Ed., Yoganathan AP), AAMI, CIT Press, Pasadena, California, 91–120, 1979.

    Google Scholar 

  5. Bruss KH, Reul H, Van Gilse J: Pressure drop and velocity fields at four mechanical heart valve prostheses, Life Support Systems, 1: 3–22, 1983.

    PubMed  CAS  Google Scholar 

  6. Woo YR, Yoganathan AP: In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses, Life Support Systems, 3: 283–312, 1985.

    PubMed  CAS  Google Scholar 

  7. Schwarz AC, Tiederman WG, Phillips WM: Influence of cardiac flow rate on turbulent shear stress from a prosthetic heart valve, J. Biomech. Eng. ASME, 111: 123–8, 1988.

    Article  Google Scholar 

  8. Klepetko W, Moritz A, Khunl-Brady G, Schreiner W, Schlick W, Mlczoch J, Kronik G, Wolner E: Implantation of the Duromedic bileaflet cardiac prostheses in 400 patients, Ann Thoraxic Surgery, 44: 308–309, Sept. 1987

    Google Scholar 

  9. Klepetko W, Mortiz A: Leaflet fracture in Edwards-Duromedic leaflet valves, J. Thorac. and CV Surg., 97: 90–94, 1989.

    CAS  Google Scholar 

  10. Quijano RC: Edwards-Duromedic dysfunctional analysis, Proceedings of Cardiostim: 6th International Congress, Monte Carlo, Monaco, 1988.

    Google Scholar 

  11. Kafesjian R, Wieting DW, Ely J, Chalhine G, Frederick G, Watson R: Characterization of the cavitation potential of Pyrolitic carbon, Proceedings of International Symposium Heart Valve Diseases, London, UK, June 12–16, 1989.

    Google Scholar 

  12. Bokros JC, LaGrange LD, Schoen FJ: Control of structure of carbon for use in bioengineering, In: Chemistry and Physics of Carbon (Ed., Walker PL), Dekker, New York, 103–171, 1972.

    Google Scholar 

  13. Tokuno T, Dube CM, Walker WF: Cavitation near moving prosthetic surfaces, Artif. Organs (Supp. II), 166–168, 1978.

    Google Scholar 

  14. Lamson CL, Stinebring DR, Deutsch S, Tarbell JM: Real-time in vitro observation of cavitation in a prosthetic heart valve, Trans. ASAIO, (in press, 1991).

    Google Scholar 

  15. Guo X, Xu CC, Hwang NHC: The closing velocity of paxter-Duromedic heart valve prosthesis, Trans. Am. Soc. Artif. Intern. Organs, 36: 529–532, 1990.

    Google Scholar 

  16. Adrian RJ: Laser velocimetry, In: Fluid Mechanics Measurement (Ed., Goldstein RJ), Hemisphere Publishing Corporation, Berlin, 155–244, 1983.

    Google Scholar 

  17. Feldman HJ et al.: Noninvasive in vivo and in vitro study of the St. Jude Medical mitral valve prosthesis, Am. J. Cardiol., 49: 1101–09, 1982.

    Article  Google Scholar 

  18. Prahbu A, Hwang NHC: Dynamic analysis of flutter in disc type mechanical heart valve prostheses, J. Biomech., 21 (7): 585–90, 1988.

    Article  Google Scholar 

  19. Reif TH, Schulte TJ, Hwang NHC: Estimation of the rotational undamped natural frequency of bileaflet cardiac valve prostheses, J. Biomech. Engr., ASME, 112: 327–32, 1990.

    Article  CAS  Google Scholar 

  20. Hele-Shaw HJS: Investigation of the nature of the surface resistance of water and of streamline motion under certain experimental conditions, Trans. Inst. Naval Architects, 40, 1898.

    Google Scholar 

  21. Ku DN, Giddens DP: Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomech., 20: 407–21, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Khodadadi JM, Valchos NS, Liepsch D, Moravec S: LDA measurements and numerical prediction of pulsatile laminar flow in a plane 90-degree bifurcation, J. Biomech. Eng., 110: 129–36, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Sallam AM, Hwang NHC: Human red blood cell hemolysis in a turbulent shear flow–Contribution of Reynolds shear stresses, J. Biorheol., 21: 783–97, 1985.

    Google Scholar 

  24. Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K: Comparison of steady and pulsatile flow in a double branching arterial model, J. Biomech., 16: 753–66, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Einav S, Avidor J, Vidne B: Haemodynamics of coronary artery-saphenous vein bypass, J. Biomed. Eng., 7: 305–9, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Abdallah SA, Hwang NHC: Arterial stenosis murmurs: An analysis of pressure and flow fields, J. Acoust. Soc. Am., 83: 318–344, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Goldsmith HL, Karino T: Mechanically induced thromboemboli, In: Quantitative Cardiovascular Studies (Eds., Hwang NHC, Gross DR, Patel DJ ), University Park Press, Baltimore, Maryland, 1978.

    Google Scholar 

  28. Pei H, Xi BS, Hwang NHC: Wall shear stress distribution in a model human aortic arch: Assessment by an electrochemical technique, J. Biomech., 18: 645–56, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Karino T, Motomiya M: Flow patterns in the human carotid artery bifurcation, Stroke, 15: 50, 1984.

    Article  PubMed  Google Scholar 

  30. Liepsch D, Moravec S: Pulsatile flow on non-Newtonian fluids in distensible models of human artery, J. Biorheol., 21: 571–86, 1984.

    CAS  Google Scholar 

  31. Liepsch D: Flow in tubes and arteries, a comparison, J. Biorheol., 23: 395–433, 1986.

    CAS  Google Scholar 

  32. Deters OJ, Bargeron CB, Mark FF, Friedman MH: Measurement of wall motion and wall shear stress in a compliant arterial cast, J. Biomech. Eng., 108: 355–358, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Shu MCS, Noon GP, Hwang NHC: Phasic flow patterns in a hemodialysis venous anastomosis, J. Biorheol., 24: 711–722, 1987.

    CAS  Google Scholar 

  34. Shu MCS, Noon GP, Hwang NHC: Flow profiles and wall shear stress distribution at a hemodialysis venous anastomosis: preliminary study, J. Biorheol., 24: 723–35, 1987.

    CAS  Google Scholar 

  35. Zamora JL, Gao ZR, Weilbaecher G, Navarro L, Ives CL, Hita C, Noon GP: Hemodynamic and morphologic feature of arteriovenous angioaccess loop grafts, Proc. ASAIO, Atlanta, Georgia, USA, May, 1985.

    Google Scholar 

  36. Noon GP, Hwang NHC: Hemorheologic contribution to thrombosis, Devices and Technology Branch Contractors Meeting, NHLBI-NIH, December, 1987.

    Google Scholar 

  37. Shu MCS: Hemodynamics study of angioaccess venous anastomoses, Ph.D. Thesis, University of Houston, Houston, Texas, 1988.

    Google Scholar 

  38. Gentile BJ, Gross DR, Chuong CTJ, Hwang NHC: Segmental volume distensibility of the canine thoracic aorta in vivo, Cardiovasc. Res., 22: 385–9, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Wang LC, Guo GX, Tu R, Hwang NHC: Graft compliance and anastomotic flow patterns, Trans. Am. Soc. Artif. Intern. Organs, XXXVI: 1–5, 1990.

    Google Scholar 

  40. Gartrell LR, Rhodes DB: A scanning Laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distribution, NASA Technical paper, NASA: TP-1661, 43, 1980.

    Google Scholar 

  41. Hino M, Nadaoka K, Kobayashi T, Hironaga K, Muramoto T: Flow structure measurement by beam scan type LDA, Fluid Dyn. Res., 1: 177–190, 1987.

    Article  Google Scholar 

  42. Wang SK et al: Acousto-optical scanning laser Doppler anemometry, Chinese patent No. 88–2165836, 1988.

    Google Scholar 

  43. Guo GX, Li W, Hwang NHC: Measurement of tube flow velocity profiles utilizing acousto-optic scanning LDA, ASME Winter Annual Meeting, Dallas, Texas, USA, Nov. 25–30, 1990.

    Google Scholar 

  44. Li EB, Wang SK: Two-component LDA system with optic-electro-hybrid feedback, Proc. Intern. Conf. on Fluid Dynamics Measurement and Its Applications, Beijing, China, Oct. 25–27, 1989.

    Google Scholar 

  45. Oldengarm J: Two-dimensional laser Doppler velocimetry, Proceedings of the LDA-Symposium, Copenhagen, 1975.

    Google Scholar 

  46. Patel DJ, Vaishnav RN: Mechanical properties of arteries, In: Cardiovascular Flow Dynamics and Measurements (Eds., Hwang NHC, Normann NA ), University Park Press, Baltimore, Maryland, 1987.

    Google Scholar 

  47. Betram CD: Ultra sonic transit-time system for arterial diameter measurement, Med. Biol. Eng. Comput., 15: 589–499, 1977.

    Article  Google Scholar 

  48. Begel DH: The static elastic properties of the arterial wall, J. Physol., 156: 445–457, 1961.

    Google Scholar 

  49. Zhou JS, Wahab SA, Hwang NHC: Monitoring vascular wall motions with a laser optical system, ASME Winter Annual Meeting, Dallas, Texas, USA, Nov. 25–30, 1990.

    Google Scholar 

  50. Image Sensing Products Manual: EGG Reticon Company, Salem, Massachusetts, 01970, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, SK., Hwang, N.H.C. (1992). Laser Measurements in Cardiovascular Flow Dynamics Research. In: Hwang, N.H.C., Turitto, V.T., Yen, M.R.T. (eds) Advances in Cardiovascular Engineering. NATO ASI Series, vol 235. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4421-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4421-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3228-0

  • Online ISBN: 978-1-4757-4421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics