Skip to main content

Physico-Chemical Properties of Milk

  • Chapter

Abstract

Milk is a complex colloidal dispersion containing fat globules, casein micelles and whey proteins in an aqueous solution of lactose, minerals and a few other minor compounds. Its physical and chemical properties are dependent on a variety of compositional and processing factors. An understanding of these properties is important to the dairy industry as they affect most of the unit operations, e.g. fluid flow, mixing, homogenization, freezing and sterilization processes. Measurements of some of the physico¡ªchemical properties are also used to determine the concentration of milk components, or to assess the quality of milk products (e.g. viscosity to determine the aggregation of protein and fat particles). Various physical and chemical properties of milk have been reviewed previously (Jenness and Patton, 1959; Jenness et al., 1974; Walstra and Jenness, 1984; Lewis, 1987; Sherbon, 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adda, J., Blane-Platin, E., Jeunet, R., et al. (1968) Trial of the infrared analyzer. Lait, 48, 145–54.

    Google Scholar 

  • AOAC (1995a) Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Volume 2. AOAC Official Method 972.16. Fat, lactose, protein, and solids in milk. Mid-Infrared Spectroscopic Method. AOAC, Arlington, VA, 33, pp. 23–6.

    Google Scholar 

  • AOAC (1995b) Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Volume 2. AOAC Official Method 990.22. Freezing point of milk. Thermistor Cryoscope Method. AOAC, Arlington, VA, 33, pp. 5–7.

    Google Scholar 

  • Aschaffenburg, R. (1945) Surface activity and proteins of milk. J. Dairy Res., 14, 316–29.

    Google Scholar 

  • Bakalor, S. (1965) The estimation of protein in milk from its fluorescence in the ultraviolet region. Aust. J. Dairy Technol., 20, 151–3.

    CAS  Google Scholar 

  • Bates, R.G. (1964) Determination of pH, Theory and Practice, John Wiley, New York.

    Google Scholar 

  • Berg, H.E. and van Boekel, M.A.J.S. (1994) Degradation of lactose during heating of milk. 1. Reaction pathways. Neth. Milk Dairy J., 48, 157–75.

    CAS  Google Scholar 

  • Bertsch, A.J. (1982) La chaleur massique du lait entier et écrémé de 50°C à 140°C. Lait, 62, 265–75.

    Google Scholar 

  • Bertsch, A.J. (1983) Surface tension of whole and skim milk between 18 and 135°C. J. Dairy Res., 50, 259–67.

    Google Scholar 

  • Bertsch, A.J. and Cerf, O. (1983) Dynamic viscosities of milk and cream from 70 to 135°C. J. Dairy Res., 50, 193–200.

    Google Scholar 

  • Bertsch, A.J., Bimbenet, J.J. and Cerf, O. (1982) La masse volumique du lait et de crèmes de 65°C à 140°C. Lait, 62, 250–64.

    Google Scholar 

  • Biggs, D.A. (1964) Infra-red analysis of milk for fat, protein, lactose and solidsnot-fat. Cony. Proc. Milk Ind. Found., 1964, 28–34.

    Google Scholar 

  • Biggs, D.A. (1979a) Infrared estimation of fat, protein and lactose in milk: collaborative study. J. Assoc. Off. Anal. Chem., 61, 1015–34.

    Google Scholar 

  • Biggs, D.A. (1979b) Performance specifications for infrared milk analysis. J. Assoc. Off. Anal. Chem., 62, 1211–14.

    CAS  Google Scholar 

  • Brathen, G. (1983) Factors Affecting the Freezing Point of Genuine Cow’s Milk, Bulletin 154, International Dairy Federation, Brussels, pp. 6–11.

    Google Scholar 

  • Brown, L.W. and Price, W.V. (1934) A study of the relationships between hydrogen ion concentration, titratable acidity, and quality in Cheddar cheese. J. Dairy Sci., 17, 33–45.

    CAS  Google Scholar 

  • Buchanan, J.H. and Peterson, E.E. (1927) Buffers of milk and buffer value. J. Dairy Sci., 10, 224–31.

    CAS  Google Scholar 

  • Calandron, A. and Grillet, L. (1964) Measurement of the surface tension of certain milk with a Nouy tensiometer. Lait, 44, 505–9.

    Google Scholar 

  • Clemmensen, K. (1980) Modified fat determination, Dairy Field, 163 (12), 51–2, 54.

    Google Scholar 

  • Cooper, J.R. and Le Fevre, E.J. (1979) Thermophysical Properties of Water Substance, Edward Arnold Publishers Ltd., London, p. 2.

    Google Scholar 

  • Covacevich, H.R. and Kosikowski, F.V. (1979) Buffer, lactic fermentation and rennet coagulation properties of skim milk retentates produced by ultrafiltration. J. Dairy Sci., 62, 204–7.

    CAS  Google Scholar 

  • Creamer, L.K. (1972) Hydrogen ion equilibria of bovine I3-casein B. Biochim. Biophys. Acta, 271, 252–61.

    CAS  Google Scholar 

  • Cuevas, R. and Cheryan, M. (1978) Thermal conductivity of liquid foods — a review. J. Food Process Eng., 2, 283–306.

    Google Scholar 

  • Davis, J.G. and MacDonald, F.J. (1953) Richmond’s Dairy Chemistry. 5th edn, Charles Griffin & Co., London.

    Google Scholar 

  • Demott, B. (1967) The influence of vacuum pasteurisation upon the freezing point and specific gravity of milk. Milk Food Technol., 30, 253–5.

    Google Scholar 

  • Dickinson, E. and Stainsby, G. (1982) Colloids in Food, Applied Science Publishers, London, pp. 25–8, 262–7.

    Google Scholar 

  • Dolby, R.M. and McDowall, F.H. (1935) Studies on the chemistry of Cheddar cheesemaking. 2. The buffer capacity of wheys. J. Dairy Res., 6, 235–42.

    Google Scholar 

  • Dunkley, W.L. (1951) Hydrolytic rancidity in milk. 1. Surface tension and fatacidity as measures of rancidity. J. Dairy Sci., 34, 515–20.

    CAS  Google Scholar 

  • Dziuba, J. and Bochenek, A. (1984) Denaturation changes in alcohol concentrates of whey proteins. Acta Alimen. Pol., 10, 247–54.

    CAS  Google Scholar 

  • Edsall, J.L. and Wyman, J. (1958) Acid-base equilibria, in Biophysical Chemistry, Academic Press, New York, pp. 406–549.

    Google Scholar 

  • Eilers, H., Saal, R.H.J. and van den Waarden, M. (1947) Chemical and Physical Investigations on Dairy Products, Elsevier Publishing Co., New York, pp. 4–37.

    Google Scholar 

  • Eisses, J. and Zee, B. (1980) The freezing point of authentic cows milk and farm tank milk in the Netherlands. Neth. Milk Dairy J., 34, 162–80.

    Google Scholar 

  • Evenhuis, N. and de Vries, T.R. (1956a) The condition of calcium phosphate in milk. III. Neth Milk Dairy J., 10, 101–13.

    CAS  Google Scholar 

  • Evenhuis, N. and de Vries, T.R. (1956b) The condition of calcium phosphate in milk. IV. Neth. Milk Dairy J., 10, 180–9.

    CAS  Google Scholar 

  • Fernandez-Martin, F. (1972a) Influence of temperature and composition on some physical properties of milk and milk concentrates. I. Heat capacity. J. Dairy Res., 39, 65–73.

    Google Scholar 

  • Fernandez-Martin, F. (1972b) Influence of temperature and composition on some physical properties of milk and milk concentrates. II. Viscosity. J. Dairy Res., 39, 75–82.

    Google Scholar 

  • Fernandez-Martin, F. and Montes, F. (1972) Influence of temperature and composition on some physical properties of milk and milk concentrates. III. Thermal conductivity. Milchwissenschaft, 27, 772–6.

    CAS  Google Scholar 

  • Fernandez-Martin, F. and Montes, F. (1977) Thermal conductivity of creams. J. Dairy Res., 44, 103–9.

    Google Scholar 

  • Fox, K.K., Holsinger, V.H. and Pallansch, M.J. (1963) Fluorometry as a method of determining protein content of milk. J. Dairy Sci., 46, 302–9.

    CAS  Google Scholar 

  • Fox, P.F., Lucey, J.A. and Cogan, T.M. (1990) Glycolysis and related reactions during cheese manufacture and ripening. CRC Crit. Rev. Food Sci. Nutr., 29, 237–53.

    CAS  Google Scholar 

  • Franks, F., (ed.) (1993) Protein hydration, in Protein Biotechnology: Isolation, Characterization and Stabilization, Humana Press, Totawa, New Jersey, pp. 437–65.

    Google Scholar 

  • Gillickson, I.S. (1983) Applications of infrared to the analysis of milk and milk products. J. Sci. Food Agric., 34, 1026–7.

    Google Scholar 

  • Gold, V. (1956) pH Measurements: Their Theory and Practice, Methuen, London. Goulden, J.D.S. (1963) Determination of SNF of milk and unsweetened

    Google Scholar 

  • condensed milk from refractive index measurements. J. Dairy Res.,30, 411–17.

    Google Scholar 

  • Goulden, J.D.S. and Sherman, P. (1962) A simple spectroturbimetric method for the determination of the fat content of homogenized ice cream mixes. J. Dairy Res., 29, 47–53.

    Google Scholar 

  • Goulden, J.D.S., Shields, J. and Haswell, R. (1964) The infrared milk analyser. J. Soc. Dairy Technol., 17, 28–33.

    Google Scholar 

  • Grappin, R. and Jeunet, R. (1970) The `Milko-Tester Automatic’ for routine determination of fat in milk. Lait, 50, 233–56.

    Google Scholar 

  • Greenbank, G.R. and Wright, P.A. (1951) The deaeration of raw whole milk before heat treatment as a factor in retarding the development of the tallowy flavour in its dried product. J. Dairy Sci., 34, 815–18.

    CAS  Google Scholar 

  • Harding, F. (1983) The Effect of Processing. Bulletin 154, International Dairy Federation, Brussels, p. 11.

    Google Scholar 

  • Harkins, W.D. (1952) The Physical Chemistry of Surface Films, Reinhold Publishing Corp., New York.

    Google Scholar 

  • Harland, H.A., Coulter, S.T. and Jenness, R. (1952) The interrelationship of

    Google Scholar 

  • processing treatments and oxidation-reduction systems as factors affecting the keeping quality of dry whole milk. J. Dairy Sci.,34, 643–54.

    Google Scholar 

  • Haugaard, G. and Pettinati, J.D. (1959) Photometric milk fat determination. J. Dairy Sci., 42, 1255–75.

    CAS  Google Scholar 

  • Henningson, R.W. (1963) The variability of the freezing point of fresh raw milk. J. Assoc. Off. Anal. Chem., 46, 1036–42.

    CAS  Google Scholar 

  • Henningson, R.W. (1969) Thermistor cryoscopic determination of the freezing point value of milk produced in North America. J. Assoc. Off. Anal. Chem., 52, 142–51.

    Google Scholar 

  • Herrington, B.L., Sherbon, J.W., Ledford, R.A. and Houghton, G.E. (1972) Composition of milk in New York State. New York Food Life Sciences Bulletin, Volume 18.

    Google Scholar 

  • Higginbottom, C. and Taylor, M.M. (1960) The oxidation-reduction potential of sterilized milk. J. Dairy Res., 27, 245–57.

    Google Scholar 

  • Ho, C. and Waugh, D.F. (1965) Interactions of bovine as-casein with small ions. J. Am. Chem. Soc., 87, 110–17.

    CAS  Google Scholar 

  • Holt, C. (1975) Casein micelle size from elastic and quasi-elastic light scattering measurements. Biochim. Biophys. Acta, 400, 293–301.

    CAS  Google Scholar 

  • Holt, L.E., Lamer, V.K. and Chown, H.B. (1925) Studies in calcification. 1. The solubility product of secondary and tertiary calcium phosphate under various conditions. J. Biol. Chem., 64, 509–65.

    CAS  Google Scholar 

  • Home, D.S. (1993) Viscosity of milk and its concentrates, in Food Colloids and Polymérs: Stability and Mechanical Properties ( E. Dickinson and P. Walstra, eds.), Royal Society of Chemistry, Cambridge, England, pp. 260–5.

    Google Scholar 

  • IDF (1990) International Standard for the Determination of the Milkfat, Protein and Lactose Content of Milk. Guide for the Operation of Mid-Infra-Red Instruments. Standard 141A, International Dairy Federation, Brussels.

    Google Scholar 

  • International Organization for Standardization (1974) Milk and liquid milk products — density hydrometers for use in products with a surface tension of approximately 45 mN/m. ISO 2449–1974 (cited in Dairy Sci. Abst. (1974) 36, p. 514 ).

    Google Scholar 

  • Jackson, J. (1936) Factors in the reduction of methylene blue in milk. J. Dairy Res., 7, 31–40.

    CAS  Google Scholar 

  • Janal, R. and Blahovec, J. (1974) Thermal hysteresis of milk viscosity. Proc. 19th Int. Dairy Cong. (New Delhi), 1E, 170–2.

    Google Scholar 

  • Jenness, R. (1988) Composition of milk, in Fundamentals of Dairy Chemistry ( N.P. Wong, R. Jenness, M. Keanny, and E.H. Marth, eds.), Van Nostrand Reinhold, New York, pp. 1–38.

    Google Scholar 

  • Jenness, R. and Patton, S. (1959) Principles of Dairy Chemistry, John Wiley, New York.

    Google Scholar 

  • Jenness, R., Shipe, W.F. and Sherbon, J.W. (1974) Physical properties of milk, in Fundamentals of Dairy Chemistry, 2nd edn ( B.H. Webb, A.H. Johnson and J.A. Alford, eds.), AVI Publishing Company, Inc., Westport, CT, pp. 40241.

    Google Scholar 

  • Jeurnink, T.J.M. and de Kruif, K.G. (1993) Changes in milk on heating: viscosity measurements. J. Dairy Res., 60, 139–50.

    Google Scholar 

  • Jorgensen, H. (1955) A universal definition of the concept of `buffers’ founded on Bronsted’s acid-base definition. Ann. Acad. Sci. Fenn., 66, 503–19.

    Google Scholar 

  • Josephson, D.V. and Doan, F.J. (1939) Observations on cooked flavour in milk its source and significance. Milk Dealer, 29 (2), 35–6, 54, 56, 58–60, 62.

    Google Scholar 

  • Kessler, H.G. (1981) Food Engineering and Dairy Technology, Verlag A. Kessler, Freising, Germany, p. 330.

    Google Scholar 

  • Kessler, H.G. (1984) Effects of technological processes on the freezing point of milk. Milchwissenschaft, 39, 339–41.

    Google Scholar 

  • King, R.L. and Dunkley, W.L. (1959) Relation of natural copper in milk to incidence of spontaneous oxidized flavor. J. Dairy Sci., 42, 420–7.

    CAS  Google Scholar 

  • Kirchmeier, O. (1979) Titrimetric studies on milk and milk products. J. Dairy Res., 46, 397–400.

    CAS  Google Scholar 

  • Kirchmeier, O. (1980) Pufferkapzitaten and puffergleichgewichte der milch. Milchwissenschaft, 35, 667–70.

    CAS  Google Scholar 

  • Konev, S.V. and Kozunin, I.I. (1961) Fluorescence method for the determination of protein in milk. Dairy Sci. Abstr., 23, 103–5.

    Google Scholar 

  • Kostaropoulos, A.E., Speiss, W.E.L. and Wolf, W. (1975) Anhaltswerte für die

    Google Scholar 

  • Temperaturleitfähigkeit von Lebensmitteln. Lebensm. Wiss. Technol.,8 108–10. Lane, H.L., Richter, R.L. and Randolph, H.E. (1970) Influence of mastitis on properties of milk. VI. Buffer capacity. J. Dairy Sci., 53 1389–90.

    Google Scholar 

  • Langley, K.R. and Temple, D.M. (1985) Viscosity of heated skim milk. J. Dairy Res., 52, 223–7.

    Google Scholar 

  • Lewis, M.J. (1987) Physical Properties of Foods and Food Processing Systems, Ellis Horwood, Chichester, England.

    Google Scholar 

  • Lindqvist, B. (1976) The air content of milk. An instrument for determining the content of dispersed gas in flowing milk. Nordisk Mejeriindustri, 3, 317–20 (cited in Dairy Sci. Abstr., (1977) 39, p. 78 ).

    Google Scholar 

  • Lips, A., Clark, A.H., Hart, P.M. and Hall, D.G. (1988) Electrostatic interactions and ion-binding in concentrated casein systems — an electrochemical approach. Food Hydrocoll., 2, 95–106.

    Google Scholar 

  • Lucey, J.A. (1992) Acid—base Buffering and Rennet Coagulation Properties of Milk Systems, Ph.D. Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Lucey, J.A. and Fox, P.F. (1993) Importance of calcium and phosphate in cheese manufacture: a review. J. Dairy Sci., 76, 1714–24.

    CAS  Google Scholar 

  • Lucey, J.A., Hauth, B., Gorry, C. and Fox, P.F. (1993a) Acid-base buffering of milk. Milchwissenschaft, 48, 268–72.

    CAS  Google Scholar 

  • Lucey, J.A., Gorry, C. and Fox, P.F. (1993b) Acid-base buffering properties of heated milk. Milchwissenschaft, 48, 438–41.

    CAS  Google Scholar 

  • Lucey, J.A., Gorry, C. and Fox, P.F. (1993c) Changes in the acid-base buffering curves during the ripening of Emmental cheese. Milchwissenschaft, 489, 183–6.

    Google Scholar 

  • Lucey, J.A., Gorry, C., O’Kennedy, B.T., et al. (1996). Effect of acidification and neutralization of milk on some physico-chemical properties of casein micelles. Int. Dairy J., 6, 257–72.

    CAS  Google Scholar 

  • Mariette, F., Tellier, C., Brule, G. and Marchal, P. (1993) Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. J. Dairy Res., 60, 175–88.

    Google Scholar 

  • McIntyre, R.T., Parrish, D.B. and Fountain, F.C. (1952) Properties of the colostrum of the dairy cow. VII. pH, buffer capacity and osmotic pressure. J. Dairy Sci., 23, 405–22.

    Google Scholar 

  • Miles, C.A., van Beek, G. and Veerkamp, C.H. (1983) Calculation of thermophysical properties of foods, in Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallström, et al., eds.), Applied Science Publishers, London, pp. 269–312.

    Google Scholar 

  • Mills, B.L. and van de Voort, F.R. (1982) Evaluation of CH stretch measurement for estimation of fat in aqueous fat emulsions using infrared spectroscopy. J. Assoc. Off. Anal. Chem., 65, 1357–61.

    CAS  Google Scholar 

  • Mistry, V.V. and Kosikowski, F.V. (1985) Growth of lactic acid bacteria in highly concentrated ultrafiltered skim milk retentates. J. Dairy Sci., 68, 2536–43.

    CAS  Google Scholar 

  • Mistry, V.V. and Kosikowski, F.V. (1986) A naturally buffered bulk retentate starter from ultrafiltered milk. J. Dairy Sci., 69, 945–50.

    Google Scholar 

  • Miyagawa, K. and Namba, A. (1988) Buffer capacity of cows milk. Nippon Shokuhin kogyo gakkaiski, 35, 417–22.

    CAS  Google Scholar 

  • Mohr, W. and Brockmann, C. (1930) Surface tension measurements of milk. Milchwiss. Forsch., 10, 72–95.

    CAS  Google Scholar 

  • Muir, D.D. (1984) Reviews of the progress of dairy science: frozen concentrated milk. J. Dairy Res., 51, 649–64.

    CAS  Google Scholar 

  • Mulder, H. and Walstra, P. (1974) The Milk Fat Globule, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks., England.

    Google Scholar 

  • Nakai, S. and Le, A.C. (1970) Spectrophotometric determination of protein and fat in milk simultaneously. J. Dairy Sci., 53, 276–8.

    CAS  Google Scholar 

  • Nelson, V. (1949) The physical properties of evaporated milk with respect to surface tension, grain formation and color. J. Dairy Sci., 32, 775–85.

    CAS  Google Scholar 

  • Nelson, L.S., Holt, C. and Hukins, D.W.L. (1989) The EXAFS spectra of poorly crystalline calcium phosphate preparations from heated milk. Phys. B, 158, 103–4.

    CAS  Google Scholar 

  • Nozaki, Y., Bunville, L.G. and Tanford, C. (1959) Hydrogen ion titration curvesof ß-lactoglobulin. J. Am. Chem. Soc., 81, 5523–9.

    Google Scholar 

  • O’Brien, J. (1995) Heat-induced changes in lactose: isomerization, degradation, Maillard browning, in Heat-Induced Changes in Milk, 2nd edn (P.F. Fox, ed.), International Dairy Federation Special Issue 9501, Brussels, pp. 134–70.

    Google Scholar 

  • Ohlsson, T. (1983) The measurement of thermal properties, in Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallström, et al.,eds), Applied Science Publishers, London, pp. 313–28.

    Google Scholar 

  • ikainen, P. (1990) Titration — a rapid method for the determination of proteolysis in cheese. J. Dairy Res., 57, 149–50.

    Google Scholar 

  • Parkash, S. (1963) Studies in physico-chemical properties of milk. XIV. Surface tension of milk. Indian J. Dairy Sci., 16, 98–100.

    Google Scholar 

  • Phipps, L.W. (1957) A calorimetric study of milk, cream and the fat in cream. J. Dairy Res., 24, 51–67.

    CAS  Google Scholar 

  • Phipps, L.W. (1969) The interrelationship of the viscosity, fat content and temperature of cream between 40° and 80°C. J. Dairy Res., 36, 417–26.

    Google Scholar 

  • Porter, R.M. (1965) Fluorometric determination of protein in whole milk, skim milk and milk serum. J. Dairy Sci., 48, 99–100.

    Google Scholar 

  • Prentice, J.H. (1992) Dairy Rheology, VCH Publishers, Cambridge, England. Prouty, C.C. (1940) Observations on the growth responses of Streptococcus lactis in mastitic milk. J. Dairy Sci., 23, 899–904.

    Google Scholar 

  • Pyne, G.T. and McGann, T.C.A. (1960) The colloidal calcium phosphate of milk. II. Influence of citrate. J. Dairy Res., 27, 9–17.

    CAS  Google Scholar 

  • Randhahn, H. (1974) Contribution to the rheology of milk. Proc. 19th Int. Dairy Cong. ( New Delhi ), 1E, 202.

    Google Scholar 

  • Randhahn, H. and Reuter, H. (1978) The rheological behaviour of raw milk cream. Proc. 20th Int. Dairy Cong. (Paris), Congrilait, Paris, pp. 854–5.

    Google Scholar 

  • Rao, M.B. and Dastur, N.N. (1956) Buffer value of milk and colostrum. Indian J. Dairy Sci., 9, 36–43.

    Google Scholar 

  • Raoult, F.M. (1884) The general law on the freezing of solvents. Ann. Chem. Phys., 2, 66–93.

    Google Scholar 

  • Reuter, H. and Randhahn, H. (1978) Relation between fat globule size distribution and viscosity of raw milk. Proc. 20th Int. Dairy Cong. (Paris), Congrilait, Paris, pp. 281–7.

    Google Scholar 

  • Riedel, L. (1949) Warmeleitfähigkeitmessungen an Zuckerlösungen. Fruchtsäfen Milch. Chem. Ing. Technik, 21, 340–1.

    Google Scholar 

  • Riedel, L. (1955) Kalorimetrische Untersuchungen über das Schmelzverhalten von Fetten and Olen. Fette Seifen Anstrichm., 57, 771–82.

    CAS  Google Scholar 

  • Rose, D. and Tessier, H. (1959) Composition of ultrafiltrates from milk heated at 80 to 230°F in relation to heat stability. J. Dairy Sci., 42, 969–80.

    CAS  Google Scholar 

  • Rudzik, L. and Wöbbecke, R. (1982) Notwendigkeit der homogenisierung dei infrarot-messungen in milch. Moklerei-Zeitung Welt Milch, 36, 298, 307 (cited in Dairy Sci. Abstr., (1982) 44, p. 949 ).

    Google Scholar 

  • Ruegg, M. and Moor, U. (1985) Effect of temperature between 15 and 25°C on the density of milk. Schweiz. Milchwirtsch. Forsch., 14, (3) 7–10 (cited in Dairy Sci. Abstr., (1988) 50, p. 300 ).

    Google Scholar 

  • Schmidt, D.G. and Both, P. (1987) Studies on the precipitation of calcium phosphate. 1. Experiments in the pH range 5.3 to 6.8 at 25°C and 50°C in the absence of additives. Neth. Milk Dairy J., 41, 105–20.

    CAS  Google Scholar 

  • Sharma, R.R. (1963) Determination of surface tension of milk by the drop method and the ring method. Indian J. Dairy Sci., 16, 101–8.

    Google Scholar 

  • Sharp, P.F. and Krukovsky, V.N. (1939) Differences in absorption of solid and liquid fat globules as influencing the surface tension and creaming of milk. J. Dairy Sci., 22, 743–51.

    CAS  Google Scholar 

  • Sherbon, J.W. (1988) Physical properties of milk, in Fundamentals of Dairy Chemistry, 3rd edn. (N.P. Wong, R. Jenness, M. Kenny and E.H. Marth, eds.), Van Nostrand Reinhold, New York, pp. 410–14.

    Google Scholar 

  • Shipe, W.F. (1959) The freezing point of milk. A review. J. Dairy Sci., 42, 1745–62. Shipe, W.F. (1964) Effect of vacuum treatment on freezing point of milk. J. Assoc. Off. Agric. Chem., 47, 570–2.

    Google Scholar 

  • Shipe, W.F. and Senyk, G.F. (1973) Collaborative study of the Foss Milko-Tester method for measuring fat in milk. J. Assoc. Off. Anal. Chem., 56, 538–40.

    Google Scholar 

  • Shipe, W.F. and Senyk, G.F. (1975) Collaborative study of the Milko-Tester method for measuring fat in homogenized and unhomogenized milk. J. Assoc. Off. Anal. Chem., 58, 572–5.

    Google Scholar 

  • Shipe, W.F. and Senyk, G.F. (1980) Evaluation of Milko-Tester Minor for determining fat in milk. J. Assoc. Off. Anal. Chem., 63, 716–19.

    CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1991) Changes in size and composition of protein aggregates on heating reconstituted concentrated skim milk at 120°C. J. Food Sci., 56, 671–7.

    CAS  Google Scholar 

  • Singh, R.R.B. and Patil, G.R. (1990) Kinetics of whitening of milk during UHT processing. Milchwissenschaft,45 367–9.

    Google Scholar 

  • Snoeren, T.H.M., Damman, A.J. and Klok, H.J. (1982) The viscosity of skim-milk concentrates. Neth. Milk Dairy J., 36, 305–16.

    CAS  Google Scholar 

  • Snoren, T.H.M., Brinkhuis, J.A., Damman, A.J. and Klok, H.J. (1984) Viscosity and age-thickening of skim-milk concentrate. Neth. Milk Dairy J., 38, 43–53.

    Google Scholar 

  • Srilaorkul, S., Ozimek, L., Wolfe, F. and Dziuba, J. (1989) The effect of ultrafiltration on physicochemical properties of retentate. Can. Inst. Food Sci. Technol. J., 5, 56–62.

    Google Scholar 

  • St-Gelais, D. Hache, S. and Gros-Louis, M. (1992) Combined effects of temperature, acidification, and diafiltration on composition of skim milk retentate and permeate. J. Dairy Sci.,75 1167–72.

    Google Scholar 

  • Tanford, C. (1962) The interpretation of hydrogen ion titration curves of proteins. Adv. Protein Chem., 17, 69–165.

    CAS  Google Scholar 

  • Toenjes, D.A., Strasser, S. and Bath, D.L. (1991) Specific gravity: a better test of first-milk quality. Calif. Agric.,45 (3) 23–4.

    Google Scholar 

  • Unnikrishnan, V. and Doss, K.D.V.V. (1982) Effect of citrate and calcium contents on buffer capacity of cows milk. Asian J. Dairy Res., 1, 83–7.

    Google Scholar 

  • Vahcic, N., Palic, A. and Ritz, M. (1992) Mathematical evaluation of relationships between copper, iron, ascorbic acid and redox potential of milk. Mi1chwissenschaft, 47, 228–30.

    CAS  Google Scholar 

  • Berg, L. (1961) Changes in the pH of milk during freezing and frozen storage. J. Dairy Sci., 44, 26–31.

    Google Scholar 

  • Have, A.J., Deen, J.R. and Mulder, H. (1979) The composition of cow’s milk. 4. The calculation of the titratable acidity studied with separate milkings of individual cows. Neth. Milk Dairy J., 33, 164–71.

    Google Scholar 

  • Dijk, H.J.M. (1990) The properties of casein micelles. 2. Formation and degradation of the micellar calcium phosphate. Neth. Milk Dairy J., 44, 111–24.

    Google Scholar 

  • Kemenade, T. (1988) Influence of Casein on Precipitation of Calcium Phosphates. Ph.D. Thesis, University of Utrecht, The Netherlands, pp. 7–28.

    Google Scholar 

  • Os, G.A.J., de Bruin, S.H. and Jannsen, L.H.M. (1972) Hydrogen ion titration curves of protein as a source of structural and functional information. J. Electroanal. Chem., 37, 303–11.

    Google Scholar 

  • Slyke, D.D. (1922) On the measurement of buffer values and the relationship of buffer value to the dissociation constant and the concentration and reaction of the buffer solution. J. Biol. Chem., 52, 525–71.

    Google Scholar 

  • Vliet, T. and Walstra, P. (1980) Relationship between viscosity and fat content of milk and cream. J. Text. Stud., 11, 65–8.

    Google Scholar 

  • Visser, J., Minihan, A., Smits, P., et al. (1986) Effect of pH and temperature on the milk salt system. Neth. Milk Dairy J., 40, 351–68.

    CAS  Google Scholar 

  • Visser, SA. (1962) Occurrence of calcium phosphates in the presence of organic substances, especially proteins. J. Dairy Sci., 45, 710–16.

    CAS  Google Scholar 

  • Walstra, P. (1965) Light scattering by milk fat globules. Neth. Milk Dairy J., 19, 93–109.

    CAS  Google Scholar 

  • Walstra, P. (1967) Turbidimetric method for milk fat determination. J. Dairy Sci., 50, 1839–40.

    CAS  Google Scholar 

  • Walstra, P. and de Roos, A.L. (1993) Proteins at air-water and oil-water interfaces: static and dynamic aspects. Food Rev. Int., 9, 503–25.

    CAS  Google Scholar 

  • Walstra, P. and Jenness, R. (1984) Dairy Chemistry and Physics, John Wiley, New York.

    Google Scholar 

  • Watson, P.D. (1958) Effect of variations in fat and temperature on the surface tension of various milks. J. Dairy Sci., 41, 1693–8.

    CAS  Google Scholar 

  • Webb, B.H. (1933) A note on the surface tension of homogenized cream. J. Dairy Sci., 16, 369–73.

    Google Scholar 

  • White, J.C.D. and Davies, D.T. (1958) The relation between the chemical composition of milk and the stability of the caseinate complex. 1. General considerations, description of samples, methods and chemical composition of samples. J. Dairy Res., 25, 236–55.

    CAS  Google Scholar 

  • Whitnah, C.H. (1959) The surface tension of milk A review, J. Dairy Sci., 42, 1437–49.

    CAS  Google Scholar 

  • Whittier, E.O. (1929) Buffer intensities of milk and milk constituents. 1. Buffer action of casein in milk. J. Biol. Chem., 83, 79–88.

    CAS  Google Scholar 

  • Whittier, E.O. (1933) Buffer intensities of milk and milk constituents. 2. Buffer action of calcium phosphate. J. Biol. Chem., 102, 733–47.

    CAS  Google Scholar 

  • Wiley, W.J. (1935a) A study of the titratable acidity of milk. 1. The influence of the various milk buffers on the titration curves of fresh and sour milk. J. Dairy Res., 6, 71–85.

    Google Scholar 

  • Wiley, W.J. (1935b) A study of the titratable acidity of milk. 2. The buffer curves of milk. J. Dairy Res., 6, 86–90.

    Google Scholar 

  • Wunderlich, B. (1990) Thermal Analysis, Academic Press, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, H., McCarthy, O.J., Lucey, J.A. (1997). Physico-Chemical Properties of Milk. In: Fox, P.F. (eds) Advanced Dairy Chemistry Volume 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4409-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4409-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4411-8

  • Online ISBN: 978-1-4757-4409-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics