Biochemical Markers of the Primary Olfactory Pathway: A Model Neural System

  • Frank L. Margolis

Abstract

The purpose of biochemistry is to try to explain biology at the molecular level. Thus, by analogy, the role of neurochemistry is to try to explain the biology of neural tissue and then, ultimately, to integrate biochemical correlates of neural activity with associated behavioral events. The brain of a mammal is perhaps its most complex organ with regard to both structure and function. To the naked eye it is composed of several morphologically distinct subsections apparently randomly joined together. As one proceeds to finer and finer levels of resolution, it rapidly becomes apparent that this tissue is composed of billions of cells which interact with each other in ways which are extremely complex, morphologically variable, and yet extremely specific. Nevertheless, the usual biochemical approach to this tissue is to treat it quite cavalierly and to convert it into a homogeneous “thin soup.” This results in total destruction of structure and renders virtually impossible any attempts to understand structure-function relationships at supra-molecular levels. Intercellular relationships in neural tissue in vivo, occur largely between dissimilar groups of cells. An approach to a study of these relationships by means of biochemical markers will permit the evaluation of the physiological state of a selected cell in the presence of various other cell types.

Keywords

Olfactory Bulb Biochemical Marker Olfactory Epithelium Zinc Sulfate Olfactory Mucosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D., Pisano, J. J., and Udenfriend, S., 1962, The distribution of homocarnosine in mammals, Arch. Biochem. Biophys. 99: 210–213.PubMedGoogle Scholar
  2. Abraham, D., Pisano, J. J., and Udenfriend, S., 1964, Uptake of carnosine and homocarnosine by rat brain slices, Arch. Biochem. Biophys. 104: 160–165.PubMedGoogle Scholar
  3. Adler, J., 1972, Chemoreception in bacteria, in Olfaction and Taste IV (D. Schneider, ed.), pp. 70–80, Wissenschaftiche Verlag, MBH, Stuttgart.Google Scholar
  4. Airhart, J., Sibiga, S., Sanders, H., and Khairallah, E. A., 1973, An ultramicromethod for quantitation of amino acids in biological fluids, Anal. Biochem. 53: 132–140.PubMedGoogle Scholar
  5. Alberts, J., 1974, Producing and interpreting experimental olfactory deficits, Physiology and Behavior 12: 657–670.PubMedGoogle Scholar
  6. Altman, J., 1969, Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain with special reference to persisting neurogenesis in the olfactory bulb, J. Comp. Neurol. 137: 433–457.PubMedGoogle Scholar
  7. Andres, K. H., 1966, Der feinbau der regio olfactoria von makrosmatikern, Zeitschr.f. Zell- forsch. 69: 140–154.Google Scholar
  8. Aprison, M. H., and Werman, R., 1968, A combined neurochemical and neurophysiological approach to identification of central nervous system transmitters, Neurosci. Res. 1: 143–174.PubMedGoogle Scholar
  9. Ash, K. O., Bransford, J. E., and Koch, R. B., 1966, Studies on dispersions of rabbit olfactory cells, J. Cell Biol. 29: 554–561.PubMedGoogle Scholar
  10. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters : Studies on the uptake of i-asparate, GABA, -glutamate and glycine in cat spinal cord, J. Neurochem. 20: 529–539.PubMedGoogle Scholar
  11. Baslow, M. H., Turplaty, P., and Lenney, J. F., 1969, N-acetylhistidine metabolism in the brain, heart and lens of the goldfish, Carassius Auratus in vivo: Evidence of rapid turnover and a possible intermediate, Life Sciences 8: 535–541.PubMedGoogle Scholar
  12. Baradi, A. F., and Bourne, G. H., 1959, Histochemical localization of Cholinesterase in gustatory and olfactory epithelia, J. Histochem. & Cytochem. 7: 2–7.Google Scholar
  13. Beidler, L. M. (ed.), 1971, Chemical senses, in: Handbook of Sensory Physiology, part 1, Olfaction, Vol. 4, Springer-Verlag, Berlin.Google Scholar
  14. Berger, B., 1971a, Etude ultrastructurale de la degwnerescence wallerienne experimentale d’un nerf entierement amyelinique: le nerf olfactif. I. Modifications axonales, J. Ultrastructure Res. 37: 105–118.Google Scholar
  15. Berger, B., 1971b, Etude ultrastructurale de la degenerescence wallerienne experimentale d’un nerf entierement amyelinique: le nerf olfactif. II. Reactions cellulaires, J. Ultrastructure Res. 37: 419–494.Google Scholar
  16. Berger, B., 1973, Degenerescence transsynaptique dans le bulbe olfactif du lapin, apres desafferentation peripherique, Acta Neuropath. (Berlin) 24: 128–152.Google Scholar
  17. Bignami, A., Eng, L., Dahl, D., and Uyeda, C, 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43: 429–435.PubMedGoogle Scholar
  18. Bondy, S. C, and Margolis, F. L., 1971, Sensory deprivation and brain development, in Brain and Behavior Research (J. Bures, E. R. John, P. G. Kostuk, and L. Pickenhain, eds.), Vol. 4, pp. 3–54, Fisher Verlag, Jena.Google Scholar
  19. Bovet, D., Bovet-Nitti, F., and Oliverio, A., 1969, Genetic aspects of learning and memory in mice, Science 163: 139–149.PubMedGoogle Scholar
  20. Bradford, H. F., 1972, Cerebral cortex slices and synaptosomes: In vitro approaches to brain metabolism, in Methods of Neurochemistry (R. Fried, ed.), Vol. 3, pp. 155–202, Dekker, New York.Google Scholar
  21. Brownstein, M. J., Palkovits, M., Saavedra, J., Bassiri, R., and Utiger, R., 1974, Thyrotropin releasing hormone in specific nuclei of the brain, Science 185: 267–269.PubMedGoogle Scholar
  22. Bruun, A., Ehinger, B., and Forsberg, A., 1974, In vitro uptake of β-alanine into rabbit retinal neurons, Exptl. Brain Res. 19: 239–247.Google Scholar
  23. Calissano, P., Moore, B., and Friesen, A., 1969, Effect of calcium ion on S-100, a protein of the nervous system, Biochemistry 8: 4318–4326.PubMedGoogle Scholar
  24. Cheal, M. L., and Sprott, R. L., 1971, Social olfaction: A review of the role of olfaction in a variety of animal behaviors, Psychol. Reports 29: 195–243.Google Scholar
  25. Clark, W. L. G., 1957, Inquiries into the anatomical basis of olfactory discrimination, Proc. Roy. Soc. (London) B146: 299–319.Google Scholar
  26. Cuenod, M., Marko, P., and Niederer, E., 1973, Disappearance of particulate tectal protein during optic nerve degeneration in the pigeon, Brain Res. 49: 422–426.PubMedGoogle Scholar
  27. Dahlstrom, A., Fuxe, K., Olson, L., and Ungerstedt, U., 1965, On the distribution and possible function of monoamine nerve terminals in the olfactory bulb of the rabbit, Life Sciences 4: 2071–2074.PubMedGoogle Scholar
  28. Dannies, P., and Levine, L., 1971, Structural properties of bovine brain S-100 protein, J. Biol. Chem. 246: 6276–6283.PubMedGoogle Scholar
  29. Davey, C. L., 1960a, Effects of carnosine and anserine on glycolytic reactions in skeletal muscle, Arch. Biochem. Biophys. 89: 296–302.PubMedGoogle Scholar
  30. Davey, C. L., 1960b, The significance of carnosine and anserine in striated skeletal muscle, Arch. Biochem. Biophys. 89: 303–308.PubMedGoogle Scholar
  31. Davidoff, R. A., Graham, L. T., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.PubMedGoogle Scholar
  32. Davies, W. E., 1970, The disc electrophoretic separation of proteins from various parts of the guinea pig brain, J. Neurochem. 17: 297–303.PubMedGoogle Scholar
  33. Donaldson, J. St., Pierre, T., Minnich, J. L., and Barbeau, A., 1973, Determination of Na+, K+, Mg2 + , Cu2 + , Zn2+ and Mn2+ in rat brain regions, Can. J. Biochem. 51: 87–92.PubMedGoogle Scholar
  34. Dusenbery, D. B., 1973, Countercurrent separation, a new method for studying behavior of small aquatic organisms, Proc. Nat. Acad. Sci. (U.S.A.) 70: 1349–1352.Google Scholar
  35. Easton, D., 1965, Impulses at the artifactual nerve end, Cold Spring Harbor Symp. on Quant. Biol. 30: 15–28.Google Scholar
  36. Enwonwu, C. O., and Worthington, B. S., 1974, Regional distribution of homocarnosine and other ninhydrin-positive substances in brains of malnourished monkeys, J. Neurochem. 22: 1045–1052.PubMedGoogle Scholar
  37. Estable-Puig, J. F., and De Estable, R. F., 1969, Acute ultrastructural changes in the rat olfactory glomeruli after peripheral deafferentation, Exptl. Neurol. 24: 592–602.Google Scholar
  38. Filogamo, G., and Marchisio, P. C, 1971, Acetylcholine system and neural development, Neurosci. Res. 4: 29–64.PubMedGoogle Scholar
  39. Fish, W., Mann, K., and Tanford, C, 1969, The estimation of polypeptide chain molecular weights by gel filtration in 6 M guanidine hydrochloride, J. Biol. Chem. 244: 4989–4994.PubMedGoogle Scholar
  40. Fonnum, F., 1972, Application of microchemical analysis and subcellular fractionation techniques to the study of neurotransmitters in discrete areas of mammalian brain, Adv. in Biochem. Psychopharmocol. 6: 75–88.Google Scholar
  41. Gainer, H., 1972a, Electrophysiological behavior of an endogeneously active neurosecretory cell, Brain Res. 39: 403–418.PubMedGoogle Scholar
  42. Gainer, H., 1972b, Patterns of protein synthesis in individual identified molluscan neurons, Brain Res. 39: 369–385.PubMedGoogle Scholar
  43. Gainer, H., 1972c, Effects of experimentally induced diapause on the electrophysiology and protein synthesis patterns of identified molluscan neurons, Brain Res. 39: 387–402.PubMedGoogle Scholar
  44. Gainer, H., and Wollberg, Z., 1974, Specific protein metabolism in identifiable neurons of Aplysia californica, J. Neurobiol. 5: 243–261.PubMedGoogle Scholar
  45. Getchell, M., and Gesteland, R., 1972, The chemistry of olfactory reception: Stimulus specific protection from sulphydryl reagent inhibition, Proc. Nat. Acad. Sci. (U.S.A.) 69: 1494–1498.Google Scholar
  46. Giacobini, E., 1968, Chemical studies on individual neurons, Neurosci. Res. 1: 1–71.Google Scholar
  47. Graham, L. T., Jr., 1973, Distribution of glutamic acid decarboxylase activity and G ABA content in the olfaction bulb, Life Sciences 12: 443–447.Google Scholar
  48. Graziadei, P. P. C, 1971, The olfactory mucosa of vertebrates, in Handbook of Sensory Physiology (L. Beidler, ed.), Vol. 4, pp. 29–58, Springer-Verlag, Berlin.Google Scholar
  49. Graziadei, P. P. C, and Metcalf, J. F., 1971a, Autoradiographic and ultrastructural observations on the frogs olfactory mucosa, Zeitschr.f Zellforschung 16: 305–318.Google Scholar
  50. Graziadei, P. P. C, and Metcalf, J. F., 1971b, Neuronal dynamics in the olfactory mucosa of the adult vertebrates, Amer. Anat. 10: 11.Google Scholar
  51. Graziadei, P. P. C, and Dehan, R. S., 1973, Neuronal regeneration in frog olfactory system, J. Cell Biol. 59: 525–530.PubMedGoogle Scholar
  52. Green, E. (ed.), 1967, Biology of the Laboratory Mouse, McGraw-Hill Book Co., New York.Google Scholar
  53. Green, J. P., 1970, Histamine, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. IV, pp. 221–250, Plenum Press, New York.Google Scholar
  54. Griffith, A. L., LaVelle, A., and Catsimpoolas, N., 1970, Isoelectric focussing of soluble brain proteins and changes associated with development, Brain Res. 24: 537–546.PubMedGoogle Scholar
  55. Gross, G., 1973, The effect of temperature on the rapid axoplasmic transport in C-fibers, Brain Res. 56: 359–363.PubMedGoogle Scholar
  56. Hamilton, C, Henkin, R., Weir, G., and Kliman, B., 1973, Olfactory status and response to clomiphene in male gonadotrophin deficiency, Ann. Int. Med. 78: 47–55.PubMedGoogle Scholar
  57. Hanson, H., and Smith, E., 1949, Carnosinase: An enzyme of swine kidney, J. Biol. Chem. 179: 789–801.PubMedGoogle Scholar
  58. Heimer, L., 1968, Synaptic distribution of centripetal and centrifugal nerve fibers in the olfactory system of the rat. An experimental anatomical study, J. Anat. 103: 413–432.PubMedGoogle Scholar
  59. Heimer, L., 1971, Pathways in the brain, Sci. Amer. 225 (July): 48–60.Google Scholar
  60. Heimer, L., 1972, The olfactory connections of the diencephalon in the rat, Brain Behav. Evol. 6: 484–523.PubMedGoogle Scholar
  61. Henkin, R., Keiser, H., and Bronzert, D., 1972, Histidine dependent zinc loss, hypogensia, anorexia and hypogensia, J. Clin. Invest. 51: 44a.Google Scholar
  62. Henry, K., Buckholz, N., and Bowman, R., 1969, Genetics of memory, Science 165: 1148.PubMedGoogle Scholar
  63. Herrold, K., 1964, Induction of olfactory neuroepithelial tumors in-Syrian hamsters by di-ethylnitrosamine, Cancer 17: 114–121.PubMedGoogle Scholar
  64. Herschman, H. R., 1971, Synthesis and degradation of a brain-specific protein (S-100 protein) by clonal cultured human glial cells, J. Biol. Chem. 246: 7569–7571.PubMedGoogle Scholar
  65. Himwich, W., and Agrawal, H., 1969, Amino acids, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. I, pp. 33–52, Plenum Press, New York.Google Scholar
  66. Hinds, J., 1972a, Early neuron differentiation in the mouse olfactory bulb. I. Light microscopy, J. Comp. Neurol. 146: 233–252.PubMedGoogle Scholar
  67. Hinds, J., 1972b, Early neuron differentiation in the mouse olfactory bulb. II. Electron micros copy, J. Comp. Neurol. 146: 253–276.PubMedGoogle Scholar
  68. Hunt, M., and duVigneaud, V., 1939, A further contribution on the relationship of the structure of L-carnosine to its depressor activity, J. Biol. Chem. 127: 727–735.Google Scholar
  69. Iversen, L. L., Kelly, J. S., Minchin, M., Schon, F., and Snodgrass, S. R., 1973, Role of amino acids and peptides in synaptic transmission, Brain Res. 62: 567–576.PubMedGoogle Scholar
  70. Iversen, L. L., and Neal, M. J., 1968, The uptake of 3H-GABA by slices of rat cerebral cortex, J. Neurochem. 15: 1141–1149.PubMedGoogle Scholar
  71. Jakumeit, H. D., 1971, Neuroblastoma of the olfactory nerve, Acta Neurochirurg. 25: 99–108.Google Scholar
  72. Jankovic, B. D., Rakic, L., Veskov, R., and Horvat, J., 1968, Effect of intraventricular injection of anti-brain antibodies on defensive conditioned reflexes, Nature 218: 270–271.PubMedGoogle Scholar
  73. Kalyankar, G., and Meister, A., 1959, Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides, J. Biol. Chem. 234: 3210–3218.PubMedGoogle Scholar
  74. Kanazawa, A., and Sano, I., 1967, A method of determination of homocarnosine and its distribution in mammalian tissues, J. Neurochem. 14: 211–214.PubMedGoogle Scholar
  75. Keller, A., and Margolis, F., 1975, Immunological studies with the rat olfactory protein, in J. Neurochem. (in press).Google Scholar
  76. Kim, S. U., 1972, Light and electron microscopic study of neurons and synapses in neonatal olfactory bulb cultured in vitro, Exptl. Neurol. 36: 336–349.Google Scholar
  77. Kristensson, K., and Olsson, Y., 1971, Uptake of exogenous proteins in mouse olfactory cells, Acta Neuropathol. (Berlin) 19: 145–154.Google Scholar
  78. Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 419–540.Google Scholar
  79. Kuck, J., 1970, Chemical constituents of the lens, in Biochemistry of the Eye (C. Graymore, ed.), pp. 183–260, Academic Press, New York.Google Scholar
  80. Kuhar, M. J., 1973, Neurotransmitter uptake: A tool in identifying neurotransmitter-specific pathways, Life Sciences 13: 1623–1634.PubMedGoogle Scholar
  81. Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K., 1973, Choline: Selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581–593.PubMedGoogle Scholar
  82. Kurihara, K., and Koyama, N., 1972, High activity of adenylcyclase in olfactory and gustatory organs, Biochem. Biophys. Res. Comm. 48: 30–34.PubMedGoogle Scholar
  83. Labhart, A., 1974, Clinical Endocrinology, p. 470, Springer-Verlag, New York.Google Scholar
  84. Levine, J. D., and Wyman, R. J., 1973, Neurophysiology of flight in wild-type and a mutant Drosophila, Proc. Nat. Acad. Sci. (U.S.A.) 70: 1050–1054.Google Scholar
  85. Loyber, I., Perassi, N., Palma, J., and Lecuona, F., 1972, Effects on serum proteins of stimulation of olfactory bulbs in spinal rats, Exptl. Neurol. 34: 535–542.Google Scholar
  86. MacPherson, C, and Chinerman, J., 1971, Effects of intraventricular injections of brain isoantibodies on learning, Exptl. Neurol. 31: 45–52.Google Scholar
  87. Margolis, F. L., 1971, Search for S-100 protein variants in inbred strains and neurological mutants of the mouse, Third International Meeting of the International Society for Neurochemistry, Budapest, Hungary, Abstract 25.Google Scholar
  88. Margolis, F. L., 1972a, Solid phase radioimmune assay using 3H-labeled antigen for the mouse olfactory bulb specific protein, Anal. Biochem. 50: 602–607.PubMedGoogle Scholar
  89. Margolis, F. L., 1972b, A brain protein unique to the olfactory bulb, Proc. Nat. Acad. Sci. (U.S.) 69: 1221–1224.Google Scholar
  90. Margolis, F. L., 1974, Carnosine in the primary olfactory pathway, Science 184: 909–911.PubMedGoogle Scholar
  91. Margolis, F. L., and Armona, D., 1974, Carnosine: Is it a neurotransmitter in the primary olfactory pathway? Trans. Amer. Soc. Neurochem. 5: 118.Google Scholar
  92. Margolis, F. L., and Tarnoff, J. F., 1973, Site of biosynthesis of the mouse brain olfactory bulb protein, J. Biol. Chem. 248: 451–455.PubMedGoogle Scholar
  93. Margolis, F. L., Roberts, N., Ferriero, D., Feldman, J., 1974, Denervation in the primary olfactory pathway of mice: Biochemical and morphological effects, Brain Res. 81: 469 – 483.PubMedGoogle Scholar
  94. Marshall, F. D., and Yockey, W. C, 1968, The effects of various agents on the levels of homocar- nosine in rat brain, Biochem. Pharmacol. 17: 640–642.PubMedGoogle Scholar
  95. Marshall, J., and Henkin, R., 1971, Olfactory activity, menstrual abnormalities and oocyte status, Ann. Int. Med. 75: 207–211.PubMedGoogle Scholar
  96. McBride, W. J., Shank, R. P., Freeman, A. R., and Aprison, M. H., 1974, Levels of free amino acids in excitatory, inhibitory and sensory axons of the walking limbs of the lobster, Life Sciences 14: 1109–1120.PubMedGoogle Scholar
  97. McMorris, F. A., Nelson, P., and Ruddle, F., 1973, Contributions of clonal systems to neurobiology, Neurosci. Res. Prog. Bull. 11: 414–536.Google Scholar
  98. Meisami, E., and Manoochehri, S., 1974, Effect of destruction of olfactory mucosa on the activity of the Mg and Na-K-ATPase in the olfactory bulbs and cerebellum of developing rats, Fed. Proc. 33: 418.Google Scholar
  99. Metcalf, J. F., 1973, Renewal and regeneration of olfactory neurons in adult mice, Society for Neuroscience, Third Annual Meeting, p. 158.Google Scholar
  100. Moore, B. W., and McGregor, D., 1965, Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver, J. Biol. Chem. 240: 1647–1653.PubMedGoogle Scholar
  101. Moscona, A. A., 1971, Control mechanisms in hormonal induction of glutamine synthetase in the embryonic neural retina, in Hormones in Development (M. Hamburgh, and E. Barrington, eds.), pp. 169–189, Appleton-Century-Crofts, New York.Google Scholar
  102. Moulton, D. G., 1974, Cell renewal in the olfactory epithelium of the mouse, in Conference on odors: Evaluation, utilization and control, in Ann. New York Acad. Sci. (W. S. Cain, ed.), 237: 52–61.Google Scholar
  103. Moulton, D. G., and Beidler, L. M., 1967, Structure and function in the peripheral olfactory system, Physiol. Rev. 47: 1–52.PubMedGoogle Scholar
  104. Moulton, D. G., and Fink, R. P., 1972, Cell proliferation in the olfactory epithelium, in Olfaction and Taste IV (D. Schneider, ed.), pp. 20–26, Wissenschaftliche Verlag, Stuttgart.Google Scholar
  105. Nandy, K., and Bourne, G. H., 1966, Histochemical study of the oxidative enzymes in the olfactory bulb of the rat, Acta Histochem. 23: 86–93.PubMedGoogle Scholar
  106. Neidle, A., Kandera, J., and Lajtha, A., 1973, The uptake of amino acids by the intact olfactory bulb of the mouse: A comparison with tissue slice preparations, J. Neurochem. 20: 1181–1193.PubMedGoogle Scholar
  107. Neidle, A., and Kandera, J., 1974, A histidine derivative isolated from mouse olfactory bulb, Trans. Amer. Soc. Neurochem. 5: 169.Google Scholar
  108. Neuhoff, V., Briel, G., and Maelicke, A., 1971, Characterization and micro-determination of histidine as its dansyl compounds, Arzneim. Forschr. 21: 104–107.Google Scholar
  109. Nieuwenhuys, R., 1967, Comparative anatomy of olfactory tracts and centers, Prog. Brain Research 23: 1–64.Google Scholar
  110. Nir, Y., Beemer, A., and Goldwasser, R. A., 1965, West Nile virus infection in mice following exposure to a viral aerosol, Brit. J. Exptl. Pathol. 46: 443–449.Google Scholar
  111. Ortman, R., 1957, Uber succinodehydrogenase in olfactrischen system, Acta Anat. 30: 542–565.Google Scholar
  112. Ostroy, S. E., and Pak, W. L., 1973, Protein differences associated with a phototransduction mutant of Drosophila, Nature New Biology 243: 120–121.PubMedGoogle Scholar
  113. Ottoson, D., 1963, Some aspects of the function of the olfactory system, Pharm. Revs. 15: 1–42.Google Scholar
  114. Perry, T. L., Berry, K., Hansen, S., Diamond, S., and Mok, C, 1971, Regional distribution of amino acids in human brain obtained at autopsy, J. Neurochem. 18: 513–519.PubMedGoogle Scholar
  115. Perry, T. L., Hansen, S., Stedman, D., and Love, D., 1968, Homocarnosine in human cerebrospinal fluid: An age dependent phenomenon, J. Neurochem. 15: 1203–1206.PubMedGoogle Scholar
  116. Phillips, D., and Martin, G., 1972, Heart rate conditioning of anosmic rats, Physiol, and Behav. 8: 33–36.Google Scholar
  117. Pinching, A. J., and Powell, T. P. S., 1971, Ultrastructural features of transneuronal cell degeneration in the olfactory system, J. Cell Sci. 8: 253–287.PubMedGoogle Scholar
  118. Pinching, A. J., and Powell, T. P. S., 1972a, A study of terminal degeneration in the olfactory bulb of the rat, J. Cell Sci. 10: 585–619.PubMedGoogle Scholar
  119. Pinching, A. J., and Powell, T. P. S., 1972b, Experimental studies on the axons intrinsic to the glomerular layer of the olfactory bulb, J. Cell Sci. 10: 637–655.PubMedGoogle Scholar
  120. Pohorecky, L., Larin, F., and Wurtman, R., 1969, Mechanism of changes in brain norepinephrine levels following olfactory bulb lesions, Life Sciences 8: 1309–1317.PubMedGoogle Scholar
  121. Quereshi, Y., and Wood, T., 1960, The effect of carnosine on glycolysis, Biochim. Biophys. Acta 60: 190–192.Google Scholar
  122. Ralph, P., Nakoinz, I., and Cohen, M., 1973, Antibody dependent cellular immunity in newborn mice, Nature New Biology 245: 157–158.PubMedGoogle Scholar
  123. Rappoport, D., and Daginwala, H., 1968, Changes in nuclear RNA of brain induced by olfaction in catfish, J. Neurochem. 15: 991–1006.PubMedGoogle Scholar
  124. Reiss, M., 1970, The hypothalamo-hypophyseal complex, in Handbook of Neurochemistry (A. Lajtha, ed.), pp. 463–505, Plenum Press, New York.Google Scholar
  125. Roberts, P. J., Keen, P., and Mitchell, J. F., 1973, The distribution and axonal transport of free amino acids and related compounds in the dorsal sensory neuron of the rat, as determined by the dansyl reaction, J. Neurochem. 21: 199–209.PubMedGoogle Scholar
  126. Rosenberg, A., 1960, The activation of carnosinase by divalent metal ions, Biochim. Biophys. Acta 45: 297–316.PubMedGoogle Scholar
  127. Rush, R., Kindler, S., and Udenfriend, S., 1975, Solid phase radioimmunoassay on polystyrene beads and its application to dopamine-β-hydroxylase, Clin. Chem. 21: 148–150.PubMedGoogle Scholar
  128. Sabin, A. B., and Olitsky, P. K., 1937, Influence of host factors on neuroninvasivness of vesicular stomatitis virus instilled in the nose. I. Effect of age on the invasion of the brain by virus instilled in the nose, J. Exp. Med. 66: 15–34.PubMedGoogle Scholar
  129. Sachs, H., Pearson, D., Shainberg, A., Shin, S., Bryce, G., Malamed, S., and Mowles, T., 1974, Studies on the hypothalamo-neurohypophysial complex in organ culture, in International Symposium on Recent Studies of Hypothalamic Function (K. Lederis, ed.), S. Karger Press, Basel, pp. 50–66.Google Scholar
  130. Schechter, P., Friedwald, W., Bronzert, D., Raff, M., and Henkin, R., 1972, Idiopathic hypog-eusia: A description of the syndrome and a single blind study with zinc sulfate, in Neurobiology of the Trace Metals Zinc and Copper (C. C. Pfeiffer, ed.), pp. 125–140, Academic Press, New York.Google Scholar
  131. Schneider, D. J., 1973, Proteins of the nervous system, Raven Press, New York.Google Scholar
  132. Schrier, B. K., and Thompson, E. J., 1974, On the role of glial cells in the mammalian nervous system. Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells, J. Biol. Chem. 249: 1769–1780.PubMedGoogle Scholar
  133. Schriver, C. R., and Perry, T. L., 1972, Disorders of β-alanine and carnosine metabolism, in Metabolic Basis of Inherited Disease (J. Stanbury, J. Wyngaarden, and D. Fredrickson, eds.), pp. 476–490, McGraw-Hill, New York.Google Scholar
  134. Scott, J., and Pfaffman, C, 1972, Characteristics of responses of lateral hypothalamic neurons to stimulation of the olfactory system, Brain Research 48: 251–264.PubMedGoogle Scholar
  135. Sen Gupta, P., 1967, Olfactory receptor reaction to the lesion of the olfactory bulb, in Olfaction and Taste (Hayashi, T., ed.), pp. 193–201, Pergamon Press, New York.Google Scholar
  136. Severin, S. E., 1964, Problems concerned with the biological activity of naturally occurring imidazole compounds, in Proceedings of the Sixth International Congress of Biochemistry, pp. 45–61, New York.Google Scholar
  137. Shaskan, E. G., and Snyder, S. H., 1970, Kinetics of serotonin accumulation into slices from rat brain: Relationship to catecholamine uptake, J. Pharm. Exptl. Therap. 175: 404–418.Google Scholar
  138. Shepherd, G. M., 1970, The olfactory bulb as a simple cortical system: Experimental analysis and functional implications, in The Neurosciences (F. O. Schmitt, ed.), Second Study Program, pp. 539–551, Rockefeller Press, New York.Google Scholar
  139. Shepherd, G. M., 1972, Synaptic organization of the mammalian olfactory bulb, Physiol. Revs. 52: 864–917.Google Scholar
  140. Shooter, E. M., and Einstein, E. R., 1971, Proteins of the nervous system, Ann. Rev. Biochem. 40: 635–652.PubMedGoogle Scholar
  141. Siefert, K., and Ule, G., 1967, Die ultrastructure der riechschleimaut der neugeborenen und jugendlichen weissen maus, Zeitschr.f Zellforsch. 76: 147–169.Google Scholar
  142. Sinclair, J. G., 1971, Reflections on the role of receptor systems for taste and smell, Int. Rev. Neurobiol. 14: 159–171.PubMedGoogle Scholar
  143. Singh, N., Grewal, M., and Austin, J., 1970, Familial anosmia, Arch. Neurol. 22: 40–44.PubMedGoogle Scholar
  144. Skaper, S. D., Das, S., Marshall, F. D., 1973, Some properties of a homocarnosine-carnosine synthetase isolated from rat brain, J. Neurochem. 21: 1429–1445.PubMedGoogle Scholar
  145. Snyder, S., Logan, W., Bennett, J. P., and Arregui, A., 1973, Amino acids as central nervous transmitters: Biochemical studies, Neurosci. Res. 5: 131–157.PubMedGoogle Scholar
  146. Snyder, S. H., Yamamura, H. I., Pert, C. B., Logan, W. J., and Bennett, J. P., 1973, Neuronal uptake of neurotransmitters and their precursors. Studies with “transmitter” amino acids and choline, in New Concepts of Neurotransmitter Regulation (A. Mandeli, ed.), pp. 195–222, Plenum Press, New York.Google Scholar
  147. Steiner, G., and Schonbaum, E., 1972, Immunosympathectomy, Elsevier Publishing Co., New York.Google Scholar
  148. Stenesh, J. J., and Winnick, T., 1960, Carnosine-anserine synthetase from muscle, 4. Partial purification of the enzyme and further studies of β-alanyl peptide synthesis, Biochim. Biophys. Acta 11: 575–581.Google Scholar
  149. Steward, O., Lynch, G., and Cotman, C, 1973, Histochemical detection of orthograde degeneration in the central nervous system of the rat, Brain Res. 54: 65–73.PubMedGoogle Scholar
  150. Takagi, S. F., 1971, Degeneration and regeneration of the olfactory epithelium, in Handbook of Sensory Physiology (L. M. Beidler, ed.) IV–1, pp. 76–94, Springer-Verlag, Berlin.Google Scholar
  151. Taylor, A., 1968, Autosomal trisomy syndromes: A detailed study of 27 cases of Edward’s Syndrome and 27 cases of Patau’s Syndrome, J. Med. Genetics 5: 227–252.Google Scholar
  152. Vallee, B. L., and Wacker, W. E. C, 1970, Metalloproteins, in The Proteins (H. Neurath, ed.), Vol. 5, p. 86, Academic Press, New York.Google Scholar
  153. Van den Bergh, J. G., 1973, Effects of central and peripheral anosmia on reproduction of female mice, Physiol, and Behavior. 10: 257–261.Google Scholar
  154. Villet, R. H., 1974, Involvement of amino and sulphydryl groups in olfactory transduction in silk moths, Nature 248: 707–708.PubMedGoogle Scholar
  155. Wahlsten, D., 1972, Genetic experiments with animal learning: A critical review, Behav. Biol. 7: 143–182.PubMedGoogle Scholar
  156. Waley, S. G., 1966, Naturally occurring peptides, Adv. Protein Chem. 21: 2–112.Google Scholar
  157. Ward, S., 1973, Chemotaxis by the nematode Caenorhahditis elegans: Identification of attractants and analysis of the response by use of mutants. Proc. Nat. Acad. Sci. (U.S.A.) 70: 817–821.Google Scholar
  158. Waterman, R. E., and Meller, S. M., 1973, Nasal pit formation in the hamster: A transmission and scanning electron microscope study, Devel. Biol. 34: 255–266.Google Scholar
  159. Weiss, P., and Holland, Y., 1967, Neuronal dynamics and axonal flow. II. The olfactory nerve as a model test object, Proc. Nat. Acad. Sci. (Washington) 57: 258–264.Google Scholar
  160. Whitten, W. K., 1956, The effect of removal of the olfactory bulb on the gonads of mice, J. Endocrinol. 14: 160–163.PubMedGoogle Scholar
  161. Wilson, D., 1974, Protein synthesis and nerve cell specificity, J. Neurochem. 22: 465–467.PubMedGoogle Scholar
  162. Winans, S., and Powers, J., 1974, Neonatal and two-stage olfactory bulbectomy: Effects on male hamster sexual behavior, Behav. Biol. 10: 461–471.PubMedGoogle Scholar
  163. Woolf, C. M., 1972, Genetic analysis of geotactic and phototactic behavior in selected strains of Drosophila pseudoobscura, Behav. Genet. 2: 93–106.PubMedGoogle Scholar
  164. Wurtman, R., 1970, Pineal hormones, in Handbook of Neurochemistry (A. Lajtha, ed.), pp. 451–461, Plenum Press, New York.Google Scholar
  165. Yockey, W. C, and Marshall, F. D., 1969, Incorporation of [14C] histidine into homocarnosine and carnosine of frog brain in vivo and in vitro, Biochem. J. 114: 585–588.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Frank L. Margolis
    • 1
  1. 1.Roche Institute of Molecular BiologyNutleyUSA

Personalised recommendations