Abstract
Two general categories of ATPases are present in tissue. One group requires Na+ and K+ as well as Mg2+ for maximum enzyme activity and functions in active transport of Na + , K + , and other substances across cell membranes. The second group of ATPases requires Mg2+ or Ca2+ for activation. The biochemical and physiological significances of the Mg2+-Ca2 +-activated enzyme systems are less understood. The one major protein system activated by Mg2+ or Ca2+ which has received extensive study is the actomyosin complex; in this system the hydrolysis of ATP stimulated by divalent cations plays an essential role in muscle contraction and relaxation.
Keywords
ATPase Activity Muscle Actin Sucrose Gradient Relative Viscosity Bovine Brain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Abdel-Latif, A. A., 1966, A simple method for isolation of nerve-ending particles from rat brain, Biochim. Biophys. Acta 121: 403–406.PubMedGoogle Scholar
- Adelman, M. R., and Taylor, E. W., 1969a, Isolation of an actomyosin-like protein complex from slime mold Plasmodium and the separation of the complex into actin- and myosin- like fractions, Biochemistry 8: 4964–4975.PubMedGoogle Scholar
- Adelman, M. R., and Taylor, E. W., 1969b, Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry 8: 4976–4988.PubMedGoogle Scholar
- Aldridge, D. C, Armstrong, J. J., Speake, R. N., and Turner, W. B., 1967, The structure of cytochalasins A and B, J. Chem. Soc. 1967(C): 1667–1676.Google Scholar
- Arcos, J. C, Stacey, R. E., Mathison, J. B., and Argus, M. F., 1967, Kinetic parameters of mitochondria swelling, Exp. Cell Research 48: 448–460.Google Scholar
- Asatoor, A. M., and Armstrong, M. D., 1967, 3-methylhistidine, a component of actin, Biochem. Biophys. Res. Comm. 26: 168–174.PubMedGoogle Scholar
- Bárány, M., and Jaisle, F., 1960, Kontraktioniszklus und interaktion zwischen aktin und l- myosin unter der Wirkung spezifische interaktions—inhibitoren, Biochim. Biophys. Acta 41: 192–203.PubMedGoogle Scholar
- Bárány, M., Bárány, K., Gaetjens, E., and Bailin, G., 1966, Chicken gizzard myosin, Arch. Biochem. Biophys. 113: 205–221.PubMedGoogle Scholar
- Bárány, M., Nagy, B., Finkelman, F., and Chrambach, A., 1961, Studies on the removal of the bound nucleotide of actin, J. Biol. Chem. 236: 2917–2925.PubMedGoogle Scholar
- Benitez, H. H., Murray, M. R., and Wooley, D. W., 1955, Effects of serotonin and certain of its antagonists upon oligodendroglial cells in vitro, Proceedings Second International Congress Neuropathology, Pt II, 423–428, Exerpta Medica Foundation.Google Scholar
- Bed, S., and Puszkin, S., 1970, Mg2+-Ca2 +-activated adenosine triphosphatase system isolated from mammalian brain, Biochemistry 9: 2058–2067.Google Scholar
- Berl, S., Puszkin, S., and Nicklas, W. J., 1973, Actomyosin-like protein in brain, Science 179: 441–446.PubMedGoogle Scholar
- Bettex-Galland, M., and Luscher, E. F., 1960, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.Google Scholar
- Boullin, D. J., 1967, The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves, J. Physiol. (London) 189: 85–99.Google Scholar
- Bowler, K., and Duncan, C, 1967, Studies on the actomyosinlike membranes preparation from crayfish nerve cord, Comp. Biochem. Physiol. 20: 543–551.PubMedGoogle Scholar
- Bowler, K., and Duncan, C, 1968, The temperature characteristics of the ATPases from a frog brain microsomal preparation, Comp. Biochem. Physiol. 24: 223–227.PubMedGoogle Scholar
- Bray, D., 1973, Model for membrane movements in the neural growth cone, Nature 244: 93–96.PubMedGoogle Scholar
- Carsten, M. E., 1971, Uterine smooth muscle : Troponin, Arch. Biochem. Biophys. 147: 353–357.PubMedGoogle Scholar
- Carsten, M. E., and Mommaerts, W. F. H. M., 1963, A study of actin by means of starch gel electrophoresis, Biochemistry 2: 28–32.PubMedGoogle Scholar
- Chang, C-M., and Goldman, R. D., 1973, The localization of actinlike fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867–874.PubMedGoogle Scholar
- Clark, J. B., and Nicklas, W. J., 1970, The preparation of rat brain mitochondria. Preparation and characterization, J. Biol. Chem. 245: 4724–4731.PubMedGoogle Scholar
- Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom, J. Cell. Biol. 52: 1–14.PubMedGoogle Scholar
- Cohen, I., and Cohen, C. J., 1972, A tropomyosinlike protein from human platelets, J. Mol. Biol. 68: 383–387.PubMedGoogle Scholar
- Conover, T. E., and Bârâny, M., 1966, The absence of a myosin-like protein in liver mitochondria, Biochim. Biophys. Acta 127: 235–238.PubMedGoogle Scholar
- De Robertis, E., Alberici, M., Rodriguez De Lores Arnaiz, G., and Azcurra, J. M., 1966, Isolation of different types of synaptic membranes from the brain cortex, Life Sci. 5: 577–582.PubMedGoogle Scholar
- Douglas, W. W., 1965, Calcium dependent links in stimulus-secretion coupling in the adrenal medulla and neurohypophysis, Int. Wenner-Gren Symposium, Stockholm, pp. 267–290, Pergamon Press, London.Google Scholar
- Douglas, W. W., 1968, The First Gaddum Memorial Lecture. Stimulus-secretion coupling. The concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451–474.Google Scholar
- Douglass, W. W., and Sorimachi, M., 1972, Affects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones, Brit. J. Pharmacol. 45: 143–144P.Google Scholar
- Elzinga, M., 1970, Amino acid sequence studies on rabbit skeletal muscle actin. Cyanogen bromide cleavage of the protein and determination of the sequence of seven of the resulting peptides, Biochemistry 9: 1365–1374.PubMedGoogle Scholar
- Filo, R. S., Ruegg, J. C, and Bohr, D. F., 1963, Actomyosin-like protein of arterial wall, Amer. J. Physiol. 205: 1247–1252.PubMedGoogle Scholar
- Fine, R. E., and Bray, D., 1971, Actin in growing nerve cells, Nature New Biol. 234: 115–118.PubMedGoogle Scholar
- Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., 1973, Tropomyosin in brain and growing neurones, Nature New Biol. 245: 182–186.PubMedGoogle Scholar
- Gergely, J., 1964, in Biochemistry of Muscle Contraction (J. Gergely, ed.), p. 119, Little, Brown and Co., Boston, Mass.Google Scholar
- Germain, M., and Proulx, P., 1965, Adenosine triphosphatase activity in synaptic vesicles of rat brain, Biochem. Pharm. 14: 1815–1819.PubMedGoogle Scholar
- Hanson, J. P., Repke, D. I., Katz, A. M., and Aledort, L. M., 1972, A troponin-tropomyosin- like Ca++-sensitizing system in human platelets, Int. Soc. Thrombosis and Haemostasis. Illrd Congress, Washington, D.C. (Abstracts), p. 200.Google Scholar
- Hartshorne, D. J., and Mueller, H., 1967, Separation and recombination of the ethylene glycol bis (β-aminoethyl ether)-N, N 1-tetraacetic acid-sensitizing factor obtained from a low ionic strength extract of natural actomyosin, J. Biol. Chem. 242: 3089–3092.PubMedGoogle Scholar
- Hess, H.H., and Pope, A., 1959, Intralaminar distribution of adenosine triphosphatase activity in rat cerebral cortex, J. Neurochem., 3: 287–299.PubMedGoogle Scholar
- Hess, H.H., and Pope, A., 1961, Intralaminar distribution of adenosine triphosphatase activity in human frontal isocortex, J. Neurochem.,8: 299–309.PubMedGoogle Scholar
- Hoffman-Berling, H., 1956, Das kontraktile eiweiss undifferenzierter zellen, Biochim. Biophys. Acta 19: 453–463.Google Scholar
- Hosie, R. J., 1965, The localization of adenosine triphosphatase in morphologically characterized subcellular fractions of guinea-pig brain, Biochem. J. 96: 404–412.PubMedGoogle Scholar
- Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell. Biol. 43: 312–328.PubMedGoogle Scholar
- Johnson, P., and Perry, S. V., 1970, Biological activity and 3-methylhistidine content of actin and myosin, Biochem. J. 119: 293–298.PubMedGoogle Scholar
- Kadota, K., Mori, S., and Imaizumi, R., 1967, The properties of ATPase of synaptic vesicle fraction, J. Biochem. 61: 424–432.PubMedGoogle Scholar
- Kaminer, B., and Szonyi, E., 1972, Tropomyosin in electric organ of eel and torpedo, J. Cell Biol. 55: 129a.Google Scholar
- Katz, B., and Miledi, R., 1967a, The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 189: 535–544.Google Scholar
- Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. Roy. Soc. B167: 23–38.Google Scholar
- Kendrick-Jones, J., Lehman, W., and Szent-Gyorgyi, A. G., 1970, Regulation in molluscan muscles, J. Mol. Biol. 54: 313–326.PubMedGoogle Scholar
- Kirpekar, S. M., and Misu, Y., 1967, Release of noradrenaline by splenic nerve stimulation and its dependence on calcium, J. Physiol. (London) 189: 219–234.Google Scholar
- Kuehl, W. M., and Gergely, J., 1969, The kinetics of exchange of adenosine triphosphate and calcium with G-Actin, J. Biol. Chem. 244: 4720–4729.PubMedGoogle Scholar
- Lewin, E., and Hess, H. H., 1964, Intralaminar distribution of Na-K ATPase in rat cortex, J. Neurochem. 11: 473–481.PubMedGoogle Scholar
- Libet, B., 1948, Adenosinetriphosphatase (ATPase) in nerve, Fed. Proc. 7: 72.PubMedGoogle Scholar
- Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol. Chem. 249: 2268–2274.PubMedGoogle Scholar
- Mahendran, C., Nicklas, W. J., and Berl, S., 1974, Evidence for calcium-sensitive component in brain actomyosin-like protein (neurostenin), J. Neurochem. 23: 497–501.PubMedGoogle Scholar
- Malaisse, W. J., Malaisse-Lagae, F., Walker, M. O., and Lacy, P. E., 1971, The stimulussecretion coupling of glucose-induced insulin release, Diabetes 20: 257–265.PubMedGoogle Scholar
- Manasek, F. J., Burnside, B., Stroman, J., 1972, The sensitivity of developing cardiac myofibrils to cytochalasin B, Proc. Nat. Acad. Sci. (U.S.) 69: 302–312.Google Scholar
- Martonosi, A., and Gouvea, M. A., 1961, Studies on actin. VI. The interaction of nucleoside triphosphates with actin, J. Biol. Chem. 236: 1345–1352.PubMedGoogle Scholar
- Martonosi, A., Gouvea, M. A., and Gergely, J., 1960, Studies on actin. I. The interaction of [C14]-labeled adenosine nucleotide with actin, J. Biol. Chem. 235: 1700–1706.PubMedGoogle Scholar
- Naidoo, D., and Pratt, O. E., 1956, The effect of magnesium and calcium ions on adenosine triphosphatase in the nervous and vascular tissues of the brain, Biochem. J. 62: 465–469.PubMedGoogle Scholar
- Needham, D., 1960, in Structure and Function of Muscle (G. H. Bourne, ed.), Vol. 2, p. 72, Academic Press, New York.Google Scholar
- Needham, D., and Williams, J. M., 1963, Proteins of the uterine contractile mechanism, Biochem. 7.89: 552–560.Google Scholar
- Neifakh, S. A., and Kazakova, T. B., 1963, Actomyosin-like protein in mitochondria of the mouse liver, Nature 197: 1106–1107.PubMedGoogle Scholar
- Nicklas, W. J., and Bed, S., 1974, Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, Nature 247: 471–473.PubMedGoogle Scholar
- Nicklas, W. J., Puszkin, S., and Bed, S., 1973, Effect of vinblastine and colchicine on uptake and release of putative transmitters by synaptosomes and on brain actomyosinlike protein, J. Neurochem. 20: 109–121.PubMedGoogle Scholar
- Novakoff, A. B., 1967, Enzyme localization and ultrastructure of neurones, in The Neurone (H. Hyden, ed.), pp. 255–318, Elsevier, Amsterdam.Google Scholar
- Ohnishi, T., and Ohnishi, T., 1962, Extraction of contractile protein from liver mitochondria, J. Biochem. (Tokyo) 51: 380–381.Google Scholar
- Perry, S. V., and Grey, T. C, 1956, A study of the effects of substrate concentration and certain relaxing factors on the magnesium-activated myofibrillar adenosine triphosphatase, Biochem. 7.64: 184–192.Google Scholar
- Poglazov, B. F., 1966, Structure and Functions of Contractile Proteins (Poglazov, B. F., ed.), p. 69, Academic Press, New York.Google Scholar
- Poisner, A. M., and Bernstein, J., 1971, A possible role of microtubules in catecholamine release from the adrenal medulla: Effect of colchicine, vinca alkaloids and deuterium oxide, J. Pharm. Exptl. Ther. 177: 102–108.Google Scholar
- Pollard, T. D., and Korn, E., 1972, The “contractile” proteins of Acanthamoeba castellanii, in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XXXVII, pp. 573–583.Google Scholar
- Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Critical Reviews in Biochemistry, January, 1–65.Google Scholar
- Pomerat, C. M., Handelman, W. J., and Raiborn, C. W., Jr., 1967, Dynamic activities of nervous tissue in vitro, in The Neurone (H. Hyden, ed.), pp. 119–178, Elsevier, Amsterdam.Google Scholar
- Portzehl, H., Schramm, G., and Weber, H.H., 1950, Aktomyosin und seine komponenten, I. Mitt., Z. Naturforsch. 5B: 61–74.Google Scholar
- Puszkin, S., and Bed, S., 1972, Actomyosin-like protein from brain: Separation and characterization of the actin-like component, Biochim. Biophys. Acta 256: 695–709.PubMedGoogle Scholar
- Puszkin, S., Bed, S., Puszkin, E., and Clarke, D. C, 1968, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171.PubMedGoogle Scholar
- Puszkin, S., Nicklas, W. J., and Bed, S., 1972, Actomyosin-like protein in brain: Subcellular distribution, J. Neurochem. 19: 1319–1333.PubMedGoogle Scholar
- Puszkin, E., Puszkin, S., Lo, L. W., and Tanenbaum, S. W., 1973, Binding of cytochalasin D to platelet and muscle myosin, J. Biol. Chem. 248: 7754–7761.PubMedGoogle Scholar
- Rees, M. K., and Young, M., 1967, Studies on the isolation and molecular properties of homogeneous globular actin, J. Biol. Chem. 242: 4449–4458.PubMedGoogle Scholar
- Richards, E. G., Chung, C. S., Menzel, D. B., and Olcott, H. S., 1967, Chromatography of myosin on diethylaminoethylsephadex A-50, Biochemistry 6: 528–540.PubMedGoogle Scholar
- Schmitt, F. O., 1968, The molecular biology of neuronal fibrous proteins, Neurosciences Res. Prog. Bull., Vol. 6, No. 2, pp. 119–144.Google Scholar
- Schofield, J. G., 1971, Cytochalasin B and release of growth hormone, Nature New Biol. 234: 215–216.PubMedGoogle Scholar
- Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., and Senda, N., 1972, A contractile protein possessing Ca2 +-sensitivity (natural actomyosin) from leucocytes, Biochim. Biophys. Acta 256: 565–576.PubMedGoogle Scholar
- Smith, A. D., DePotter, W. P., Moerman, E. J., and De Schaedryver, A. F., 1970, Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve, Tissue Cell 2: 547–568.PubMedGoogle Scholar
- Sorimachi, M., Oesch, F., and Thoenen, H., 1973, Effects of colchicine and cytochalasin B on the release of 3H-norepinephrine from guinea-pig atria evoked by high potassium, nicotine and tyramine, Naunyn-Schmiederberg’s Arch. Pharmacol. 276: 1–12.Google Scholar
- Speidel, C. C, 1935, Studies of living nerves; phenomena of nerve irritation and recovery, degeneration and repair, J. Comp. Neurol. 61: 1–80.Google Scholar
- Spudich, J. A., 1972, Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symposium on Quantitative Biology, Vol. XXXVII, pp. 585–593.Google Scholar
- Spudich, J. A., and Lin, S., 1972, Cytochalasin B, its interaction with actin and actomyosin from muscle, Proc. Nat. Acad. Sci. (U.S.) 69: 442–446.Google Scholar
- Stewart, J. M., and Levy, H. M., 1970, The role of the calcium-troponin-tropomyosin complex in the activation of contraction, J. Biol. Chem. 245: 5764–5772.PubMedGoogle Scholar
- Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphonuclear leukocytes, J. Biol. Chem. 248: 8288–8294.PubMedGoogle Scholar
- Strohman, R. C, and Samorodin, J., 1962, The requirements for adenosine triphosphate binding to globular actin, J. Biol. Chem. 237: 363–370.PubMedGoogle Scholar
- Szent-Gyorgyi, A., 1951a, Chemistry of Muscle Contraction, p. 151, Academic Press, New York.Google Scholar
- Szent-Gyorgyi, A., 1951b, Chemistry of Muscle Contraction, p. 34, Academic Press, New York.Google Scholar
- Szent-Gyorgyi, A. G., 1951a, The reversible depolymerization of actin by potassium iodide, Arch. Biochem. Biophys. 31: 97–103.PubMedGoogle Scholar
- Szent-Gyorgyi, A. G., 1951b, Anew method for the preparation of actin, J. Biol. Chem. 192: 361–369.PubMedGoogle Scholar
- Thoa, N. B., Wooten, G. F., Axelrod, J., and Kopin, I. J., 1972, Inhibition of release of dop-amine-β-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B, Proc. Nat. Acad. Sci. (U.S.) 69: 520–522.Google Scholar
- Tonomura, Y., Tokura, S., and Sekiya, K., 1962, Binding of myosin A to F-actin, J. Biol. Chem. 237: 1074–1081.PubMedGoogle Scholar
- Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol. Chem. 236: 3198–3202.PubMedGoogle Scholar
- Weihing, R. R., and Korn, E. D., 1971, Acanthamoeba actin : Isolation and properties, Biochemistry 10: 590–600.PubMedGoogle Scholar
- Weihing, R. R., and Korn, E. D., 1972, Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N-methyllysine, Biochemistry 11: 1538–1543.PubMedGoogle Scholar
- Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.Google Scholar
- Whittaker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.PubMedGoogle Scholar
- Williams, J. A., and Wolff, J., 1971, Cytochalasin B inhibits thyroid secretion, Biochem. Biophys. Res. Comm. 44: 422–425.PubMedGoogle Scholar
- Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Nat. Acad. Sci. (U.S.) 66: 807–814.Google Scholar
- Yang, Y., and Perdue, J. R., 1972, Contractile proteins of cultured cells, J. Biol. Chem. 247: 4503–4509.PubMedGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1975