Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 85))

Abstract

In this chapter, we discuss another aspect of the wave packet theory, wave packet progagation. Earlier chapters mainly focused on the structure and structural change of wave packets, without explicit discussions of the propagation property of wave packets, which is possible only when the structure independence theorem discussed in Chapter 2 holds. However, when the structure independence theorem is not valid, we have to take the propagation property of the wave packet into account, as discussed in Chapter 2. Moreover, the propagation property of wave packet is also of great importance. As shown in Chapter 2, the wave packet is always propagated along the group velocity, that is, the wave packet velocity. Many modern ideas on wave propagation were originated by Rayleigh, including the distinction between the phase velocity and the group velocity; this appears very early in Rayleigh’s work (1877). Since then, there have been numerous studies on wave packet propagation associated with the group velocity, including several monographs (Brillouin, 1946, 1953, 1960; Tolstoy, 1973). The study of wave packet propagation was started as soon as the concept of wave group or wave packet was introduced in wave mechanics (Brillouin, 1946).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjerkness, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev. 97, 162 – 172.

    Article  Google Scholar 

  • Brillouin, L. (1946). Wave Propagation in Periodic Structures. McGraw-Hill, London.

    Google Scholar 

  • Brillouin, L. (1953). Wave Propagation in Periodic Structures, 2nd ed. Dover, New York.

    Google Scholar 

  • Brillouin, L. (1960). Wave Propagation and Group Velocity. Academic Press, New York.

    Google Scholar 

  • Charney, J.G. (1949). On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteorol. 6, 371 – 385.

    Article  Google Scholar 

  • Charney, J.G., and Drazin, P.G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 38 – 109.

    Article  Google Scholar 

  • Dickinson, R.E. (1968). Planetary Rossby waves propagating vertically through weak westerly wind waveguides. J. Atmos. Sci. 25, 984 – 1002.

    Article  Google Scholar 

  • Dickinson, R.E. (1969). Vertical propagation of planetary Rossby waves through an atmosphere with Newtonian cooling. J. Geophys. Res. 74, 929 – 938.

    Article  Google Scholar 

  • Gambo, K., and Kudo, K. (1983). Three-dimensional teleconnections in the zonally asymmetric height field during the Northern Hemisphere winter. J. Meteorol. Soc. Japan 61, 36 – 50.

    Google Scholar 

  • Grose, W.L., and Hoskins, B.J. (1979). On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci. 36, 223 – 234.

    Article  Google Scholar 

  • Hayashi, Y. (1981). Vertical-zonal propagation of a stationary planetary wave packet. J. Atmos. Sci. 40, 1197 – 1205.

    Article  Google Scholar 

  • Held, I.M. (1983). Stationary and quasi-stationary eddies in the extratropic troposphere: Theory. In Large-Scale Dynamical Processes in the Atmosphere, B.J. Hoskins and R. Peace, Eds. Academic Press, New York.

    Google Scholar 

  • Holton, J.R. (1972). Waves in the equatorial stratoposphere generated by tropospheric heat sources. J. Atmos. Sci. 29, 368 – 375.

    Article  Google Scholar 

  • Hoskins, B.J., and Karoly, D.J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179 – 1196.

    Article  Google Scholar 

  • Huang, R., and Gambo, K. (1983). The response of an atmospheric multilevel model to forcing by topography and stationary heat sources in summer. J. Meteorol. Soc. Japan 61, 495 – 509.

    Google Scholar 

  • Karoly, D.J. (1983). Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111 – 125.

    Article  Google Scholar 

  • Karoly, D.J., and Hoskins, B.J. (1982). Three-dimensional propagation of planetary wave. J. Meteorol. Soc. Japan 60, 109 – 123.

    Google Scholar 

  • Longuet-Higgins, M.S. (1964a). Planetary waves on a rotating sphere I. Proc. Roy. Soc. London 279, 446 – 473.

    Article  Google Scholar 

  • Longuet-Higgins, M.S. (1964b). On group velocity and energy flux in planetary wave motions. Deep-Sea Res. 11, 35 – 42.

    Google Scholar 

  • Longuet-Higgins, M.S. (1965). Planetary waves on a rotating sphere II. Proc. Roy. Soc. London 284, 40 – 68.

    Article  Google Scholar 

  • Longuet-Higgins, M.S. (1968). Double Kelvin waves with continuous depth profiles. J. Fluid Mech. 34, 49 – 80.

    Article  Google Scholar 

  • Lorenz, E.N. (1951). Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteorol. 8, 52 – 59.

    Article  Google Scholar 

  • Matsno, T. (1970). Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci. 27, 871 – 883.

    Article  Google Scholar 

  • Newell, R.E., Kidson, J.W., Vincent, D.G., and Boer, B.I. (1972). The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes, Vol. I. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Philander, S.G. (1990). El Nino, La Nina, and the Southern Oscillation. Academic Press, New York.

    Google Scholar 

  • Phillips, N.A. (1973). Principles of large-scale numerical weather prediction. In Dynamical Meteorology, P. Morel, Ed. Reidel, Hingham, Mass., pp. 1 – 96.

    Chapter  Google Scholar 

  • Rayleigh, Lord (1877). Theory of Sound, Vol. I. Macmillan Company, London. Reprinted 1945, Dover, New York.

    Google Scholar 

  • Rhines, P.B. (1969). Slow oscillation in an ocean of varying depth. Part I: Abrupt topography. J. Fluid Mech. 37, 161 – 189.

    Article  Google Scholar 

  • Rossby, C.G. (1945). On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteorol. 2, 187 – 204.

    Article  Google Scholar 

  • Rossby, C.G. (1949). On the dispersion of planetary waves in a barotropic atmosphere. Tellus 1, 54 – 58.

    Article  Google Scholar 

  • Schopf, P.S., Anderson, D.L.T., and Smith, R. (1981). Beta-dispersion of low-frequency Rossby waves. Dyn. Atmos. Oceans 5, 187 – 214.

    Article  Google Scholar 

  • Skovgaard, O., Johsson, I.G., and Bertelson, J.A. (1975). Computation of wave heights due to refraction and friction. Proc. Am. Soc. Civ. Engr., J. Waterways, Harbors and Boastal Engin. Div. 101 (WWL), 15 – 32.

    Google Scholar 

  • Skovgaard, O., Johsson, I.G., and Bertelson, J.A. (1976). Computation of wave heights due to refraction and friction (closure). Proc. Am. Soc. Civ. Eng., J. Waterways, Harbors and Coastal Engin. Div. 102 (WWL), 100 – 105.

    Google Scholar 

  • Smith, R. (1971). The ray paths of topographic Rossby waves. Deep-Sea Res. 18, 477 – 483.

    Google Scholar 

  • Tolstoy, I. (1973). Wave Propagation. McGraw-Hill, New York.

    Google Scholar 

  • Trefethen, L.N. (1982). Group velocity in finite difference schemes. SIAM Rev. 23, 113 – 136.

    Article  Google Scholar 

  • Tung, K.K., and Lindzen, R.S. (1979a). A theory of stationary long waves. Part I: A simple theory of blocking. Mon. Wea. Rev. 107, 714 – 734.

    Article  Google Scholar 

  • Tung, K.K., and Lindzen, R.S. (1979b). A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev. 107, 735 – 756.

    Article  Google Scholar 

  • Vichnevetsky, R. (1981). Energy, group velocity in semi-discretizations of hyperbolic equations. Math. Comp. Simulation 23, 333 – 343.

    Article  Google Scholar 

  • Vichnevetsky, R. (1984a). The energy flow equation. Math. Comp. Simulation 26, 93 – 101.

    Article  Google Scholar 

  • Vichnevetsky, R. (1984b). The mathematics of energy propagation in numerical approximations of hyperbolic equations. In Advances in Computer Methods for Partial Differential Equations V, R. Vichnevetsky and R.S. Stepleman, Eds. IMACS, New Brunswick, N.J., 133 – 166.

    Google Scholar 

  • Vichnevetsky, R. (1987). Wave propagation and reflection in irregular grids for hyperbolic equations. Appl. Numer. Math. 3, 133-166; or In Numerical Fluid Dynamics, R. Vichnevetsky, Ed. North-Holland, Amsterdam.

    Google Scholar 

  • Walker, G.T., and Bliss, E.W. (1932). World Weather V. Mem. Roy. Metero. Soc. 4, 53 – 84.

    Google Scholar 

  • Wallace, J.M., and Gutzler, D.S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. 109, 784 – 813.

    Article  Google Scholar 

  • Webster, P.J., and Holton, J.R. (1982). Cross equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci. 39, 722 – 733.

    Article  Google Scholar 

  • Yang, H., and Yang, D. (1988). Jet stream and the stationary forcing Rossby wave packet in relation to the teleconnection in the atmosphere. Acta Meteor. Sinica 46, 403 – 411.

    Google Scholar 

  • Yang, H., and Yang, D. (1990). Forced Rossby wave propagation and tele-connections in the atmosphere. Acta Meteor. Sinica 4, 18 – 26.

    Google Scholar 

  • Yeh, T.C. (1949). On energy dispersion in the atmosphere. J. Meteorol. 6, 1 – 16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, H. (1991). Wave Packets and Teleconnections. In: Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics. Applied Mathematical Sciences, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4381-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4381-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3093-4

  • Online ISBN: 978-1-4757-4381-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics