Change in Global Behavior: Bifurcation

  • Huijun Yang
Part of the Applied Mathematical Sciences book series (AMS, volume 85)


In earlier chapters, we mainly discussed the effects of basic flow and topography separately. In real geophysical flows, however, both factors are often of importance, especially for low level flows. Therefore, it is worthwhile to investigate the problem from the point of view further, in order to better understand the roles of topography and basic flow. In what follows, we combine these two factors to investigate the bifurcation properties of the evolution of a wave packet (Yang, 1988b).


Wave Packet Hopf Bifurcation Bifurcation Diagram Basic Flow Scale State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronov, A.A., and Pontryagin, A.A. (1937). Systemes Grossiers. Dokl. Akad. Nauk. USSR 14, 247–251.Google Scholar
  2. Andronov, A.A., and Witt, A. (1930). Sur la Thérie mathematiques des autooscillations. C. Acad. Sci. Paris 190, 256–258.Google Scholar
  3. Andronov, A.A., Vitt, E.A., and Khaiken, S.E. (1966). Theory of Oscilla- tors. Pergamon Press, Oxford, Reprinted by Dover, New York, 1987.Google Scholar
  4. Andronov, A.A., Leontovich, E.A., Gorden, I.I., and Maier, A.G. (1971). Theory of Bifurcations of Dynamical Systems on a Plane. Israel Program of Scientific Translations, Jerusalem.Google Scholar
  5. Charney, J.B., and DeVore, J.G. (1979). Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205–1216.CrossRefGoogle Scholar
  6. Curry, J.H. (1978). A generalized Lorenz system. Communs. Math. Phys. 60, 193–204.CrossRefGoogle Scholar
  7. Elberry, R.L. (1968). A high-rotating general circulation model experiment with cyclic time changes. Atmospheric Science Paper No. 134. Colorado State University, Fort CollinsGoogle Scholar
  8. Fultz, D., Long, R.R., Owens, G.V., Bohan, W., Kaylor, R., and Weil J. (1959). Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorol. Monogr., No. 21.Google Scholar
  9. Golubitsky, M., and Schaeffer, D.G. (1985). Singularities and Groups in Bifurcation Theory. Vol. I. Springer-Verlag, New York.Google Scholar
  10. Golubitsky, M., Steward, I., and Schaeffer, D.G. (1988). Singularities and Groups in Bifurcation Theory. Vol. II. Springer-Verlag, New York.CrossRefGoogle Scholar
  11. Gruber, A. (1975). The wave number-frequency spectra of the 200-mb wind field in the tropics. J. Atmos. Sci. 32, 1615–1625.CrossRefGoogle Scholar
  12. Guckenheimer, J., and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York.Google Scholar
  13. Hart, J.E. (1984). A laboratory story of baroclinic chaos on the f-plane. Tellus 37A, 286–296.Google Scholar
  14. Hide, R. (1958). An experimental study of thermal convection in a rotating liquid. Phil. Trans. Roy. Soc. London 250A, 441–478.CrossRefGoogle Scholar
  15. Hirsh, M.W., and Smale, S. (1974). Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.Google Scholar
  16. Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationären Bung einer differential-systems. Berl. Math.-Phys. Kl. Sächs. Acad. Wiss. Leipzig 90, 1–22. (An English translation of this paper and comments on it appear as Section 5 in Marsden and McCracken, 1976.)Google Scholar
  17. Iooss, G., and Joseph, D.D. (1980). Elementary Stability and Bifurcation Theory. Springer-Verlag, New York.CrossRefGoogle Scholar
  18. Joseph, D.D. (1976). Stability of Fluid Motions. Vol. I, Springer-Verlag, New York.Google Scholar
  19. Källen, E. (1982). Bifurcation properties of quasi-geostrophic, barotropic models and their relation to atmospheric blocking. Tellus 34, 255–265.CrossRefGoogle Scholar
  20. Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.CrossRefGoogle Scholar
  21. Lyapunov, M.A. (1893). Comm. Soc. Mat. Kharkov. (English translation in 1966: Stability of Motion, Academic Press, New York. )Google Scholar
  22. Marsden, J.E., and McCracken, M. (1976). The Hopf Bifurcation and Its Applications. Springer-Verlag, New York.CrossRefGoogle Scholar
  23. McGuirk, J.P., and Reiter, E.R. (1976). A vacillation in atmospheric energy parameters. J. Atmos. Sci. 33, 2079–2093.CrossRefGoogle Scholar
  24. Mitchell, K.E., and Dutton, J.A. (1981). Bifurcation from stationary to periodic solutions in a low-order model for forced, dissipative barotropic flow. J. Atmos. Sci. 38, 690–716.CrossRefGoogle Scholar
  25. Moroz, I.M., and Holmes, P. (1984). Double Hopf bifurcation and quasi-periodic flow in a model for baroclinic instability. J. Atmos. Sci. 41, 3147–3160.CrossRefGoogle Scholar
  26. Peixoto, M.M. (1962). Structural stability on two-dimensional manifolds. Topology 1, 101–120.CrossRefGoogle Scholar
  27. Pfeffer, R.L., and Chiang, Y. (1967). Two kinds of vacillation in rotating laboratory experiments, Mon. Wea. Rev. 95, 75–82.CrossRefGoogle Scholar
  28. Poincaré, H. (1892). Les Méthodes Nouvelles de la Mécanique Céleste, Vol. I. Gauthier-Villars, Paris.Google Scholar
  29. Poincaré, H. (1899). Les Méthodes Nouvelles de la Mécanique Céleste. 3 vols. Gauthier-Villars, Paris.Google Scholar
  30. Rouche, N., Habets, P., and Laloy, H. (1977). Stability Theory by Liapunov Direct Method, Springer-Verlag, New York.CrossRefGoogle Scholar
  31. Sparrow, C. (1982). The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer-Verlag, New York.Google Scholar
  32. Tung, K.K., and Rosenthal, A.J. (1985). Theories of multiple equilibria—A critical reexamination, Part I: Barotropic models, J. Atmos. Sci. 42, 2804–2819.CrossRefGoogle Scholar
  33. Vickroy, J.G., and Dutton, J.A. (1979). Bifurcation and catastrophe in a simple, forced, dissipative quasi-geostrophic flow. J. Atmos. Sci. 36, 42–52.CrossRefGoogle Scholar
  34. Webster, P.J., and Keller, J.L. (1975). Atmospheric variations: Vacillations and index cycles. J. Atmos. Sci. 32, 1283–1300.CrossRefGoogle Scholar
  35. Weng, H. Barcilon, A., and Magnan, J. (1986). Transitions between baro-clinic flow regimes. J. Atmos. Sci. 43 1760–1777.Google Scholar
  36. Winn-Nielsen, A. (1979). Steady states and stability properties of a low-order barotropic system with forcing and dissipation. Telles 31, 375–386.CrossRefGoogle Scholar
  37. Yang, H. (1988a). Global behavior of the evolution of a Rossby wave packet in barotropic flows on the earth’s 6-surface. J. Atmos. Sci. 45 133–146.Google Scholar
  38. Yang, H. (1988b). Bifurcation properties of the evolution of a Rossby wave packet in barotropic flows on the earth’s 6-surface. J. Atmos. Sci. 45 3667–3683.Google Scholar
  39. Yoden, S. (1985). Bifurcation properties of a quasi-geostrophic barotropic, low-order model with topography. J. Meteorol. Soc. Japan 63, 535–546.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Huijun Yang
    • 1
  1. 1.Geophysical Fluid Dynamics InstituteThe Florida State UniversityTallahasseeUSA

Personalised recommendations