Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 85))

  • 273 Accesses

Abstract

In this chapter we discuss the basic theory of the wave packet, beginning with a representation of an arbitrary disturbance system in the form of the wave packet. It will be shown that the single wave can be considered a special case of the wave packet. Hence, the wave theory, in general, can be considered the basic ingredient of the wave packet theory. In Section 2.3, the asymptotic behavior of wave is discussed and it is to be consistent with the wave packet representation of the disturbance system. That is, the energy of the disturbance system propagates at the group velocity. The WKB approximation is another way of looking at the disturbance system in the form of the wave packet. This material is addressed in Section 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D.G., and McIntyre, M.E. (1976a). Planetary waves in horizontal and vertical shear: The generalized Eliassen—Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 2031–2048.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E. (1976b). Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci. 33, 2049–2053.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E. (1978a). Generalized Eliassen—Palm and Charney—Drazin theorems for waves on axisymmetric flows in compressible atmospheres. J. Atmos. Sci. 35, 175–185.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E. (1978b). An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609–646.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E. (1978c). On wave-action and its relatives. J. Fluid Mech. 89, 647–664.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E. (1979). On wave-action and its relatives. J. Fluid Mech. 95, 795.

    Google Scholar 

  • Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (Russian original, Moscow, 1974 ).

    Google Scholar 

  • Bretherton, F.P., and Garrett, C.J.R. (1968). Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London A302, 529–554.

    Google Scholar 

  • Charney, J.G., and Drazin, P.G. (1961). Propagation of planetary-scale disturbances from the lower into upper atmosphere. J. Geophys. Res. 66, 83–109.

    Article  Google Scholar 

  • Courant, R., and Hilbert, D. (1962). Methods of Mathematical Physics, Vol. II. John Wiley, New York.

    Google Scholar 

  • Craik, A.D.D. (1985). Wave Interactions and Fluid Flows. Cambridge University Press, London.

    Google Scholar 

  • Dennery, P., and Krizywicki (1967). Methods of Mathematical Physics. Harper and Row, New York.

    Google Scholar 

  • Eckart, C. (1963). Some transformations of the hydrodynamical equations. Phys. Fluids 6, 1037–1041.

    Article  Google Scholar 

  • Eliassen, A., and Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geophys. Publ. 22 (3), 1–23.

    Google Scholar 

  • Garrett, C.J.R. (1968). On the interaction between internal gravity waves and a shear flow. J. Fluid Mech. 34, 711–720.

    Article  Google Scholar 

  • Gelfand, I.M., and Fomin, S.V. (1963). Calculus of Variations. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Goldstein, H. (1980). Classical Mechanics. 2nd ed. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Grimshaw, R.H.J. (1984). Wave action and wave-mean flow interaction, with application to stratified shear flows. Ann. Rev. Fluid Mech. 16, 11–44.

    Article  Google Scholar 

  • Hayes, W.D. (1970). Conservation of action and modal wave action. Proc. Roy. Soc. London A320, 187–208.

    Article  Google Scholar 

  • Jeffreys, H., and Jeffreys, B.S. (1956). Methods of Mathematical Physics. Cambridge University Press, London.

    Google Scholar 

  • Keller, J.B. (1958). Surface waves on non-uniform depth. J. Fluid Mech. 4, 607–614.

    Article  Google Scholar 

  • Lighthill, M.J. (1965). Group velocity. J. Ins. Math. Appl. 1, 1–28.

    Article  Google Scholar 

  • Lighthill, M.J. (1978). Waves in Fluids. Cambridge University Press, London.

    Google Scholar 

  • McIntyre, M.E. (1977). Wave transport in stratified, rotating fluids. Lecture Notes in Physics No. 71. Springer-Verlag, New York.

    Google Scholar 

  • Soward, A.M. (1972). A kinematic theory of large magnetic Reynolds number dynamos. Phil. Trans. Roy. Soc. London A272, 431–462.

    Article  Google Scholar 

  • Whitham, G.B. (1965a). Nonlinear dispersive waves. Proc. Roy. Soc. London A283, 238–261.

    Google Scholar 

  • Whitham, G.B. (1965b). A general approach to linear and nonlinear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273–283.

    Google Scholar 

  • Whitham, G.B. (1974). Linear and Nonlinear Waves. John Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, H. (1991). The Wave Packet Theory. In: Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics. Applied Mathematical Sciences, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4381-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4381-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3093-4

  • Online ISBN: 978-1-4757-4381-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics