Geophysical fluids, as considered here, mean the fluids in which the dynamics of the earth’s rotation, that is, the Coriolis force and gravitational force, play very important roles. These properties distinguish them from general fluids and make them unique in the field of fluid dynamics.


Rossby Wave Boussinesq Approximation Zonal Circulation Double Diffusive Convection General Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, London.Google Scholar
  2. Boussinesq, J. (1903). Théorie analytique de la chaleaur ( Paris: GauthierVellars ). 2, 172.Google Scholar
  3. Fofonoff, N.P. (1962). The physical properties of sea waters. The Sea Interscience 1, 3 – 30.Google Scholar
  4. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. Academic Press, New York, London.Google Scholar
  5. Holton, J.R. (1979). An Introduction to Dynamical Meteorology. 2nd ed. Academic Press, New York.Google Scholar
  6. Mamayev, O.I. (1975). Temperature-Salinity Analysis of World Oceans Waters. Elsvier, Amsterdam.Google Scholar
  7. Mihaljan, J.M. (1962). A virogous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophysical J. 136, 1126 - 1133.CrossRefGoogle Scholar
  8. Oberbeck, A. (1888). ber die Bewegungserscheinungen der Atmosphere. Sitzb. K. Presuss. Akad. Wiss. pp. 383-395 and pp. 1129-1138. Translated by C. Abbe in Smithsonian Miss. Coll. (1891).Google Scholar
  9. Pedlosky, J. (1987). Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, New York.CrossRefGoogle Scholar
  10. Pond, S., and Pickard, G.L. (1983). Introduction to Dynamical Oceanography. 2nd ed. Pergamon Press, Toronto, New York.Google Scholar
  11. Rossby, C.-G., and collaborators (1939). Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38 – 55.Google Scholar
  12. Spiegel, E.A., and Veronis, G. (1960). On the Boussinesq approximation for a compressible fluid. Astrophysical J. 131, 442 – 447.CrossRefGoogle Scholar
  13. Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge University Press, London.CrossRefGoogle Scholar
  14. Yang, H. (1987). Evolution of a Rossby wave packet in barotropic flows with asymmetric basic current, topography and 6-effect. J. Atmos. Sci. 44, 2267 – 2276.CrossRefGoogle Scholar
  15. Yang, H. (1988). Global behavior of the evolution of a Rossby wave packet in barotropic flows on the earth’s 6-surface. J. Atmos. Sci. 45, 133 - 146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Huijun Yang
    • 1
  1. 1.Geophysical Fluid Dynamics InstituteThe Florida State UniversityTallahasseeUSA

Personalised recommendations