Skip to main content

Primary Processes in Photosynthesis: What do we learn from High-Field EPR Spectroscopy?

  • Chapter
Very High Frequency (VHF) ESR/EPR

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 22))

Abstract

Taking advantage of the improved spectral and temporal resolution of high-frequency/high-field EPR at 95 GHz/3.4 T and 360 GHz/12.8 T, as compared to conventional X-band EPR (9.5 GHz/0.34 T), two classes of photosynthetic protein systems are characterized with respect to structure and dynamics: (i) Light-generated electron-transfer intermediates in reaction center proteins, for example from the Rb. sphaeroides purple bacterium, (ii) light-driven proton-pump intermediates of site-directed nitroxide spin-labeled bacteriorhodopsin proteins from the purple membrane of Halobacterium salinarium. The aim of theses studies is to obtain detailed molecular information beyond the X-ray structure for a better understanding of the structure-dynamics-function relationships of transfer proteins which convert energy of sunlight into electrochemical energy. (i) Primary photosynthesis in the reaction centers (RCs) of green plants and purple bacteria is the process of light-induced charge separation and stabilization of (bacterio) chlorophyll donor (P) and quinone acceptor (Q) cofactors via transmembrane electron-transfer steps. Thereby transient radical ions P+• and QA -• together with weakly coupled radical-pair states P+•Q-• are formed. For the P+•, QA -•and QB -• cofactors in their binding sites of Rb. sphaeroides RCs, cw and pulsed high-field EPR/ENDOR and field-swept electron-spinecho experiments provided detailed information on structure, hydrogen-bond interactions and anisotropic dynamics at biologically relevant time scales. (ii) The combination of EPR and genetic methods for selected mutations is a powerful strategy for determining structure and dynamics of proteins by site-directed spin labeling (SDSL) with one or two appropriately functionalized nitroxide radicals. For the light-induced proton-transfer protein bacteriorhodopsin the SDSL/EPR method at high Zeeman fields and microwave frequencies becomes particularly powerful for elucidating polarity and proticity effects of the protein microenvironment on hyperfine and g-tensors of nitroxide spin labels along putative proton pathways across the membrane. Conformational changes of the protein during the photocycle could be traced revealing location and function of the molecular switch for vectorial proton transfer. A short description of the laboratory-built 95-GHz and 360-GHz EPR and ENDOR spectrometers at FU Berlin is also included in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chemerisov, S.D., Grinberg, O.Y., Tipikin, D.S., Lebedev, Y.S., Kurreck, H., Möbius, K., 1994, Mechanically Induced Radical Pair Formation in PorphyrinQuinone and Related Donor-Acceptor Mixtures. Unusual Stability and Zero-Field Splittings. Chem. Phys. Lett., 218: 353–361

    Article  CAS  Google Scholar 

  2. Chemerisov, S.D., Perekhodtsev, G.D., Tipikin, D.S., Lebedev, Y.S., Prokofef, A.I., Aleksandrov, A.I., Doubinskii, A.A., Möbius, K., Poluektov, O.G., Schmidt, J., 1996, Magnetic Properties of Metal-Quinone High-Spin Complexes Prepared by Solid-State Mechano-Activation and by Chemical Synthesis in Solution. J. Chem. Soc., Faraday Trans., 92: 1959–1968

    Article  CAS  Google Scholar 

  3. Doubinskii, A.A., Lebedev, Y.S., Möbius, K., 1997, ENDOR Amplitudes of Triplet State Molecules: I. Electric-Circuit Analogy Treatment. Appl. Magn. Reson., 13: 439–457

    Article  CAS  Google Scholar 

  4. Doubinskii, A.A., Lebedev, Y.S., Salikhov, K.M., Möbius, K., 1997, ENDOR Amplitudes of Triplet State Molecules: II. Orientational Dependence of the v,, Frequency Line and S-T0 Mixing. Appl. Magn. Reson., 459–471

    Google Scholar 

  5. Freed, J.H., 2000, New Technologies in Electron Spin Resonance. Annu, Rev. Phys. Chem., 51: 655–689

    Article  CAS  Google Scholar 

  6. Budil, D.E., Earle, K.E., Lynch, W.B., Freed, J.H. 1989, Electron Paramagnetic Resonance at 1 Millimeter Wavelengths, In Advanced EPR. Applications in Biology and Biochemistry,ed. Hoff, A.J., pp. 307–340. Elsevier, Amsterdam.

    Google Scholar 

  7. Prisner, T., Rohrer, M., MacMillan, F., 2001, Pulsed EPR Spectroscopy: Biological Applications. Annu. Rev. Phys. Chem., 52: 279–313

    Article  PubMed  CAS  Google Scholar 

  8. Special Issue on High-Field/High-Frequency EPR. Appl. Magn. Reson.,21(34): 256–628

    Google Scholar 

  9. Möbius, K., 2000, Primary Processes in Photosynthesis: What Do We Learn from High-Field EPR Spectroscopy? Chem. Soc. Rev., 29: 129–139

    Article  Google Scholar 

  10. Lubitz, W., Feher, G., 1999, The Primary and Secondary Acceptors in Bacterial Photosynthesis: III Characterization of the Quinone Radicals QA and QB’ by EPR and ENDOR. Appl. Magn. Reson., 17: 1–48

    Article  CAS  Google Scholar 

  11. Lancaster, C.R.D., Michel, H. 2001, Photosynthetic Reaction Centres of Purple Bacteria, In Handbook of Metalloproteins,eds Wieghardt, K., Huber, R., Poulos, T., Messerschmidt, A., pp. 119–135. Wiley, Chichester.

    Google Scholar 

  12. Allen, J.P., Williams, J.C., 1998, Photosynthetic Reaction Centers. FEBS Lett., 438: 5–9

    Article  PubMed  CAS  Google Scholar 

  13. Möbius, K., 1993, High Field EPR and ENDOR on Bioorganic Systems, In EMR of Paramagnetic Molecules, Biological Magnetic Resonance, Vol. 13, eds Berliner, L.J., Reuben, J., pp. 253–274. Plenum Publishing Corp., New York.

    Google Scholar 

  14. Deisenhofer, J., Norris, J.R., eds, 1993, The Photosynthetic Reaction Center, Vol. I and II, San Diego.

    Google Scholar 

  15. Hoff, A.J., Deisenhofer, J., 1997, Photophysics of Photosynthesis. Structure and Spectroscopy of Reaction Centers of Purple Bacteria. Phys. Rep., 287: 1–247

    Article  CAS  Google Scholar 

  16. Bixon, M., Fajer, J., Feher, G., Freed, J.H., Gamliel, D., Hoff, A.J., Levanon, H., Möbius, K., Nechushtai, R., Norris, J.R., Scherz, A., Sessler, J.L., Stehlik, D., 1992, Primary Events in Photosynthesis: Problems, Speculations, Controversies, and Future Trends. Isr. J. Chem., 32: 369–518

    Google Scholar 

  17. Levanon, H., Möbius, K., 1997, Advanced EPR Spectroscopy on Electron Transfer Processes in Photosynthesis and Biomimetic Model Systems. Annu. Rev. Biophys. Biomolec. Structure, 26: 495–540

    Article  CAS  Google Scholar 

  18. Stehlik, D., Möbius, K., 1997, New EPR Methods for Investigating Photoprocesses with Paramagnetic Intermediates. Annu. Rev. Phys. Chem., 48: 745–784

    Article  PubMed  CAS  Google Scholar 

  19. Moser, C.C., Page, C.C., Chen, X., Dutton, P.L., 1997, Biological Electron Tunneling through Native Protein Media. J. Biol. Inorg. Chem., 2: 393–398

    Article  CAS  Google Scholar 

  20. Stryer, L., 2001, Biochemistry, W. H. Freeman Company, New York.

    Google Scholar 

  21. Jordan, P., Fromme, P., Klukas, O., Witt, H.T., Saenger, W., Krauß, N., 2001, Three-Dimensional Structure of Photosystem I at 2.5 A Resolution. Nature, 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  22. Zouni, A., Witt, H.T., Kern, J., Fromme, P., Krauß, N., Saenger, W., Orth, P., 2001, Crystal Structure of Photosystem II from Synechococcus elongates at 3.8 A Resolution. Nature, 409: 739–743

    Article  PubMed  CAS  Google Scholar 

  23. Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H., 1985, Structure of the Protein Subunits in the Photosynthetic Reaction Centre of Rhodopseudomonas viridis at 3 A Resolution. Nature, 318: 618–624

    Article  PubMed  CAS  Google Scholar 

  24. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., Rees, D.C., 1987, Structure of the Reaction Center from Rhodobacter sphaeroides R-26: I. The Cofactors. Proc. Nat. Acad. Sci. USA, 84: 5730–5734

    Article  PubMed  CAS  Google Scholar 

  25. Stowell, M.H.B., McPhillips, T.M., Rees, D.C., Soltis, S.M., Abresch, E., Feher, G., 1997, Light-Induced Structural Changes in Photosynthetic Reaction Center: Implications for Mechanism of Electron-Proton Transfer. Science, 276: 812–816

    Article  PubMed  CAS  Google Scholar 

  26. Kuglstatter, A., Hellwig, P., Fritzsch, G., Wachtveitl, J., Oesterhelt, D., Mäntele, W., Michel, H., 1999, Identification of a Hydrogen Bond in the Phe M197 -> Tyr Mutant Reaction Center of the Photosynthetic Purple Bacterium Rhodobacter sphaeroides by X-Ray Crystallography and FTIR Spectroscopy. FEBS Lett., 463: 169–174

    Article  PubMed  CAS  Google Scholar 

  27. Jortner, J., Bixon, M., eds, 1999, Electron Transfer. From Isolated Molecules to Biomolecules. Part 1 and 2,Vol. 106 and 107.

    Google Scholar 

  28. Plato, M., Möbius, K., Michel-Beyerle, M.E., Bixon, M., Jortner, J., 1988, Intermolecular Electronic Interactions in the Primary Charge Separation in Bacterial Photosynthesis. J. Am. Chem. Soc., 110: 7279–7285

    Article  CAS  Google Scholar 

  29. Camara-Artigas, A., Brune, D., Allen, J.P., 2002, Interactions between Lipids and Bacterial Reaction Centers Determined by Protein Crystallography. Proc. Nat. Acad. Sci. USA, 99: 11055–11060

    Article  PubMed  CAS  Google Scholar 

  30. Bixon, M., Jortner, J., 1997, Electron Transfer via Bridges. J. Chem. Phys., 107: 5154–5170

    Article  CAS  Google Scholar 

  31. Skourtis, S.S., Onuchic, J.N., Beratan, D.N., 1996, A Method to Analyze Multi-Pathway Effects on Protein Mediated Donor-Acceptor Coupling Interactions. Inorg. Chim. Acta, 243: 167–175

    Article  CAS  Google Scholar 

  32. Daizadeh, I., Medvedev, E.S., Stuchebrukhov, A.A., 1997, Effect of Protein Dynamics on Biological Electron Transfer. Proc. Nat. Acad. Sci. USA, 94: 37033708

    Google Scholar 

  33. Oesterhelt, D., 1998, The Structure and Mechanism of the Family of Retinal Proteins from Halophilic Archaea. Curr. Opin. Struct. Biol., 8: 489–500

    Article  PubMed  CAS  Google Scholar 

  34. Haupts, U., Tittor, J., Oesterhelt, D., 1999, Closing in on Bacteriorhodopsin: Progress in Understanding the Molecule. Annu. Rev. Biophys. Biomol. Struct., 28: 367–399

    Article  PubMed  CAS  Google Scholar 

  35. Luecke, H., Schoben, B., Richter, H.-T., Cartailler, J.-P., Lanyi, J.K., 1999, Structure of Bacteriorhodopsin at 1.55 A Resolution. J. Mol. Biol., 291: 899–911

    Article  PubMed  CAS  Google Scholar 

  36. Koch, M.H.J., Dencher, N.A., Oesterhelt, D., Plöhn, H.-J., Rapp, G., Büldt, G., 1991, Time-Resolved X-Ray Diffraction Study of Structural Changes Associated with the Photocycle of Bacteriorhodopsin. EMBO J., 10: 521–526

    PubMed  CAS  Google Scholar 

  37. Subramaniam, S., Henderson, R., 2000, Molecular Mechanism for Vectorial Proton Translocation by Bacteriorhodopsin. Nature, 406: 653–657

    Article  PubMed  CAS  Google Scholar 

  38. Subramaniam, S., Lindahl, M., Bullough, P., Faruqi, A.R., Tittor, J., Oesterhelt, D., Lanyi, J., Henderson, R., 1999, Protein Conformational Changes in the Bacteriorhodopsin Photocycle. J. Mol. Biol., 287: 145–161

    Article  PubMed  CAS  Google Scholar 

  39. Vonck, J., 1996, A Three-Dimensional Difference Map of the N Intermediate in the Bacteriorhodopsin Photocycle: Part of the F Helix Tilts in the M to N Transition. Biochemistry, 35: 5870–5878

    CAS  Google Scholar 

  40. Oka, T., Kamikubo, H., Tokunaga, F., Lanyi, J.K., Needleman, R., Kataoka, M., 1999, Conformational Change of Helix G in the Bacteriorhodopsin Photocycle: Investigation with Heavy Atom Labeling and X-Ray Diffraction. Biophys. J., 76: 1018–1023

    Article  PubMed  CAS  Google Scholar 

  41. Sass, H.J., Büldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, R., Berendzen, J., Ormos, P., 2000, Structural Alterations for Proton Translocation in the M State of Wild-Type Bacteriorhodopsin. Nature, 406: 649–653

    Article  PubMed  CAS  Google Scholar 

  42. Hu, J.G., Sun, B.Q., Bizounok, M., Hatcher, M.E., Lansing, J;C., Raap, J., Verdegem, P.J.E., Lugtenburg, J., Griffin, R.G., Herzfeld, J., 1998, Early and Late Intermediates in the Bacteriorhodopsin Photocycle: A Solid-State NMR Study. Biochemistry, 37: 8088–8096

    Google Scholar 

  43. Thorgeirsson, T.E., Xiao, W., Brown, L.S., Needleman, R., Lanyi, J.K., Shin, Y.K., 1997, Transient Channel-Opening in Bacteriorhodopsin: An EPR Study. J. Mol. Biol., 273: 951–957

    Article  PubMed  CAS  Google Scholar 

  44. Rink, T., Pfeiffer, M., Oesterhelt, D., Gerwert, K., Steinhoff, H.-J., 2000, Unraveling Photoexcited Conformational Changes of Bacteriorhodopsin by Time Resolved Electron Paramagnetic Resonance Spectroscopy. Biophys. J., 78: 1519 1530

    Google Scholar 

  45. Xiao, W., Brown, L.S., Needleman, R., Lanyi, J.K., Shin, Y.K., 2000, Light-Induced Rotation of a Transmembrane Alpha-Helix in Bacteriorhodopsin. J. Mol. Biol., 304: 715–721

    Article  PubMed  CAS  Google Scholar 

  46. Radzwill, N., Gerwert, K., Steinhoff, H.-J.; 2001, Time-Resolved Detection of Transient Movement of Helices F and G in Doubly Spin-Labeled Bacteriorhodopsin. Biophys. J., 80: 2856–2866

    Article  PubMed  CAS  Google Scholar 

  47. Steinhoff, H.-J., Savitsky, A., Wegener, C., Pfeiffer, M., Plato, M., Möbius, K., 2000, High-Field EPR Studies of the Structure and Conformational Changes of Site Directed Spin Labeled Bacteriorhodopsin. Biochim. Biophys. Acta, 1457: 253–262

    Article  PubMed  CAS  Google Scholar 

  48. Wegener, C., Savitsky, A., Pfeiffer, M., Möbius, K., Steinhoff, H.-J., 2001, High-Field EPR-Detected Shifts of Magnetic Tensor Components of Spin Label Side Chains Reveal Protein Conformational Changes: The Proton Entrance Channel of Bacteriorhodopsin. Appl. Magn. Reson., 21: 441–450

    Article  CAS  Google Scholar 

  49. Möbius, K., Lubitz, W., 1987, ENDOR Spectroscopy in Photobiology and Biochemistry, In Biological Magnetic Resonance, Vol. 7, eds Berliner, L.J., Reuben, J., pp. 129–247. Plenum Publishing Corp., New York.

    Chapter  Google Scholar 

  50. Lendzian, F., Huber, M., Isaacson, R.A., Endeward, B., Plato, M., Bönigk, B., Möbius, K., Lubitz, W., Feher, G., 1993, The Electronic Structure of the Primary Donor Cation Radical in Rhodobacter sphaeroides R-26: ENDOR and Triple Resonance Studies in Single Crystals of Reaction Centers. Biochim. Biophys. Acta, 1183: 139–160

    Google Scholar 

  51. Norris, J.R., Uphaus, R.A., Crespi, H.L., Katz, J.J., 1971, Electron Spin Resonance of Chlorophyll and the Origin of Signal I in Photosynthesis. Proc. Nat. Acad. Sci. USA, 68: 625–628

    Article  PubMed  CAS  Google Scholar 

  52. Feher, G., Hoff, A.J., Isaacson, R.A., Ackerson, L.C., 1975, ENDOR Experiments on Chlorophyll and Bacteriochiorophyll in Vitro and in the Photosynthetic Unit. Ann. N. Y. Acad. Sci. USA, 244: 239–259

    Article  CAS  Google Scholar 

  53. Hoff, A.J., Möbius, K., 1978, Nitrogen Electron Nuclear Double Resonance and Proton Triple Resonance Experiments on the Bacteriochlorophyll Cation in Solution. Proc. Nat. Acad. Sci. USA, 75: 2296–2300

    Article  PubMed  CAS  Google Scholar 

  54. Lubitz, W., 1991, EPR and ENDOR Studies of Chlorophyll Cation and Anion Radicals, In Chlorophylls, ed. Scheer, H., pp. 903–944. CRC Press, Boca Raton, Florida.

    Google Scholar 

  55. Lubitz, W., Lendzian, F., Scheer, H., Gottstein, J., Plato, M., Möbius, K., 1984, Structural Studies of the Primary Donor Cation Radical 1 3 870 . in Reaction Centers of Rhodospirillum rubrum by Electron-Nuclear Double Resonance in Solution. Proc. Nat. Acad. Sci. USA, 81: 1401–1405

    Google Scholar 

  56. Burghaus, O., Rohrer, M., Götzinger, T., Möbius, K., 1992, A Novel HighField/High-Frequency EPR and ENDOR Spectrometer Operating at 3 mm Wavelength. Meas. Sci. Technol., 3: 765–774

    Article  Google Scholar 

  57. Prisner, T.F., Rohrer, M., Möbius, K., 1994, Pulsed 95 GHz High-Field EPR Heterodyne Spectrometer with High Spectral and Time Resolution. Appl. Magn. Reson., 7: 167–183

    Article  CAS  Google Scholar 

  58. Fuchs, M.R., Prisner, T.F., Möbius, K., 1999, A High-Field/High-Frequency Heterodyne Induction Mode Electron Paramagnetic Resonance Spectrometer Operating at 360 GHz. Rev. Sci. Instrum., 70: 3681–3683

    Article  CAS  Google Scholar 

  59. Dubinskii, A.A., Grishin, Y.A., Savitsky, A.N., Möbius, K., 2002, Submicrosecond Field-Jump Device for Pulsed High-Field ELDOR. Appl. Magn. Reson., 22: 369386

    Google Scholar 

  60. Schnegg, A., Fuhs, M., Rohrer, M., Lubitz, W., Prisner, T.F., Möbius, K., 2002, Molecular Dynamics of QA and QB in Photosynthetic Bacterial Reaction Centers Studied by Pulsed High-Field EPR at 95 GHz. J. Phys. Chem. B, 106: 9454–9462

    Article  CAS  Google Scholar 

  61. Savitsky, A.N., Galander, M., Möbius, K., 2001, W-Band Time Resolved Electron Paramagnetic Resonance Spectroscopy on Transient Organic Radicals in Solution. Chem. Phys. Lett., 340: 458–466

    Article  CAS  Google Scholar 

  62. Fuchs, M.R., 1999, A High-Field/High-Frequency Electron Paramagnetic Resonance Spectrometer (360 GHz/14 T). PhD Thesis, Freie Universtät Berlin, Berlin

    Google Scholar 

  63. Earle, K.A., Budil, D.E., Freed, J.H., 1993, 250-GHz EPR of Nitroxides in the Slow-Motional Regime: Models of Rotational Diffusion. J. Phys. Chem., 97: 13289–13297

    Google Scholar 

  64. Klette, R., Törring, J.T., Plato, M., Möbius, K., Bönigk, B., Lubitz, W., 1993, Determination of the G Tensor of the Primary Donor Cation Radical in Single Crystals of Rhodobacter sphaeroides R-26 Reaction Centers by 3-mm High-Field EPR. J. Phys. Chem., 97: 2051–2020

    Article  Google Scholar 

  65. Huber, M., Toning, J.T., 1995, High-Field EPR on the Primary Electron Donor Cation Radical in Single Crystals of Heterodimer Mutant Reaction Centers of Photosynthetic Bacteria–First Characterization of the G-Tensor. Chem. Phys., 194: 379–385

    Article  CAS  Google Scholar 

  66. : Toning, J.T., Un, S., Möbius, K., 1997, On the Calculation of G Tensors of Organic Radicals. J. Chem. Phys., 107: 3905–3913

    Google Scholar 

  67. Un, S., Dorlet, P., Rutherford, A.W., 2001, A High-Field EPR Tour of Radicals in Photosystems I and II. Appl. Magn. Reson., 21: 341–361

    Article  CAS  Google Scholar 

  68. Engström, M., Himo, F., Gräslund, A., Vahtras, O., Minaev, B., Agren, H., 2000, Hydrogen Bonding to the Tyrosyl Radical Analyzed by ab initio G-Tensor Calculations. J. Phys. Chem. A, 104: 5149–5153

    Article  Google Scholar 

  69. Malkina, O.L., Vaara, J., Schimmelpfennig, B., Munzarova, M., Malkin, V.G., Kaupp, M., 2000, Density Functional Calculations of Electronic G-Tensors Using Spin-Orbit Pseudopotentials and Mean-Field All-Electron Spin-Orbit Operators. J. Am. Chem. Soc., 104: 9206–9218

    Google Scholar 

  70. Kaupp, M., 2002, The Function of Photosystem I. Quantum Chemical Insight into the Role of Tryptòphan-Quinone Interactions. Biochemistry, 40: 2895–2900

    Article  Google Scholar 

  71. Neyman, K.M., Ganyushin, D.I., Rinkevicius, Z., Rösch, N., 2002, Hydrogen-Bonding Effects on Electronic G-Tensors of Semiquinone Anion Radicals: Relativistic Density Functional Investigation. Int. J. Quant. Chem., 90: 1404–1413

    Google Scholar 

  72. Burghaus, O., Plato, M., Rohrer, M., K.Möbius, MacMillan, F., Lubitz, W., 1993, 3-mm High-Field EPR on Semiquinone Radical Anions Q’- Related to Photosynthesis and on the Primary Donor P’+ and Acceptor Q’“ in Reaction Centers of Rhodobacter sphaeroides R-26. J. Phys. Chem., 97: 7639–7647

    Google Scholar 

  73. Wang, W., Belford, R.L., Clarkson, R.B., Davis, P.H., Forrer, J., Nilges, M.J., Timken, M.D., Walczak, T., Thurnauer, M.C., Noms, J.R., Morris, A.L., Zhang, Y., 1994, Very High Frequency EPR–94 GHz Instrument and Applications to Primary Reaction Centers from Photosynthetic Red Bacteria and to Other Disordered Systems. Appl. Magn. Reson., 6: 195–215

    Article  Google Scholar 

  74. Huber, M., Toning, J.T., Plato, M., Finck, U., Lubitz, W., Feick, R., Schenck, C.C., Möbius, K., 1995, Investigation of the Electronic Structure of the Primary Donor in Bacterial Photosynthesis–Measurements of the Anisotropy of the Electronic G-Tensor Using High-Field/High-Frequency EPR. Journal of Solar Energy Materials and Solar Cells, 38: 119–126

    Google Scholar 

  75. Bratt, P.J., Ringus, E., Hassan, A., Tol, H.v., Maniero, A.-L., Brunel, L.-C., Rohrer, M., Bubenzer-Hange, C., Scheer, H., Angerhofer, A., 1999, EPR on Biological Samples Beyond the Limits of Superconducting Magnets–the Primary Donor Cation of Purple Bacterial Photosynthesis. J. Phys. Chem. B, 103: 10973–10977

    Article  CAS  Google Scholar 

  76. Gulin, V.I., Dikanov, S.A., Tsvetkov, Y.D., Evelo, R.G., Hoff, A.J., 1992, Very High Frequency (135 GHz) EPR of the Oxidized Primary Donor of the Photosynthetic Bacteria Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis and of YD. (Signal II) of Plant Photosystem II. Pure and Appl. Chem., 64: 903–906

    Article  CAS  Google Scholar 

  77. Fuchs, M.R., Schnegg, A., Plato, M., Schulz, C., Müh, F., Lubitz, W., Möbius, K., 2003, The Primary Donor Cation P’ in Photosynthetic Reaction Centers of Site-Directed Mutants of Rhodobacter sphaeroides: G-Tensor Shifts Revealed by High-Field EPR at 360 GHz/12.8 T. Chem. Phys.,in press

    Google Scholar 

  78. Rohrer, M., Plato, M., MacMillan, F., Grishin, Y., Lubitz, W., Möbius, K., 1995, Orientation-Selected 95 GHz High-Field ENDOR Spectroscopy of Randomly Oriented Plastoquinone Anion Radicals. J. Magn. Reson., A 116: 59–66

    Google Scholar 

  79. Rohrer, M., MacMillan, F., Prisner, T.F., Gardiner, A.T., Möbius, K., Lubitz, W., 1998, Pulsed ENDOR at 95 GHz on the Primary Acceptor Ubisemiquinone in Photosynthetic Bacterial Reaction Centers and Related Model Systems. J. Phys. Chem. B, 102: 4648–4657

    Article  CAS  Google Scholar 

  80. Rohrer, M., Gast, P., Möbius, K., Prisner, T.F., 1996, Anisotropic Motion of Semiquinones in Photosynthetic Reaction Centers of Rhodobacter sphaeroides R26 and in Frozen Isopropanol Solution as Measured by Pulsed High-Field EPR at 95 GHz. Chem. Phys. Leu., 259: 523–530

    Article  CAS  Google Scholar 

  81. Weber, S., Fuhs, M., Hofbauer, W., Lubitz, W., Möbius, K., 1998, unpublished results

    Google Scholar 

  82. Prisner, T.F., Est, A.v.d., Bittl, R., Lubitz, W., Stehlik, D., Möbius, K., 1995, Time-Resolved W-Band (95 GHz) EPR Spectroscopy of Zn-Substituted Reaction Centers of Rhodobacter sphaeroides R-26. Chem. Phys., 194: 361–370

    Article  CAS  Google Scholar 

  83. Klukas, O., Schubert, W.-D., Jordan, P., Krauss, N., Fromme, P., Witt, H.T., Saenger, W., 1999, Localization of Two Phylloquinones, QK and QK, in an Improved Electron Density Map of Photosystem I at 4-A Resolution. J. Biol. Chem., 274: 7361–7367

    Article  PubMed  CAS  Google Scholar 

  84. Bittl, R., Zech, S.G., 2001, Pulsed EPR Spectroscopy on Short-Lived Intermediates in Photosystem I. Biochim. Biophys. Acta, 1507: 194–211

    Article  PubMed  CAS  Google Scholar 

  85. Est, A.v.d., Prisner, T.F., Bittl, R., Fromme, P., Lubitz, W., Möbius, K., Stehlik, D., 1997, Time-Resolved X-, K-, W-Band EPR of the Radical Pair State P7œ.+Ai’ of Photosystem I in Comparison with P865“-QA.-s65”-QA“ in Bacterial Reaction Centers. J. Phys. Chem. B, 101: 1437–1443

    Google Scholar 

  86. Fuhs, M., Schnegg, A., Prisner, T., Köhne, I., Hanley, J., Rutherford, A.W., Möbius, K., 2002, Orientation Selection in Photosynthetic PS I Multilayers: Structural Investigation of the Charge Separated State pm +’ A1“‘ by HighField/High-Frequency Time-Resolved EPR at 3.4 T/95 GHz. Biochim. Biophys. Acta, 1556: 81–88

    Google Scholar 

  87. Teutloff, C., Hofbauer, W., Zech, S.G., Stein, M., Bittl, R., Lubitz, W., 2001, High Frequency EPR Studies on Cofactor Radicals in Photosystem I. Appl. Magn. Reson., 21: 363–379

    Article  CAS  Google Scholar 

  88. Poluektov, O.G., Utschig, L.M., Schlesselman, S.L., Lakshmi, K.V., Brudvig, G.W., Kothe, G., Thurnauer, M.C., 2002, Electronic Structure of the Piœ Special Pair from High-Frequency EPR Spectroscopy. J. Phys. Chem. B, 106: 8911–8916

    Article  CAS  Google Scholar 

  89. Hofbauer, W., Zouni, A., Bittl, R., Kern, J., Orth, P., Lendzian, F., Fromme, P., Witt, H.T., Lubitz, W., 2001, Photosystem II Single Crystals Studied by High Frequency EPR Spectroscopy at 94 GHz: The Tyrosine Radical Yo. Proc. Nat. Acad. Sci. USA, 98: 6623–6628

    Article  PubMed  CAS  Google Scholar 

  90. Kawamura, T., Matsunami, S., Yonezawa, T., 1967, Solvent Effects on the G-Value of di-t-Butyl Nitric Oxide. Bull. Chem. Soc. Japan, 40: 1111–1115

    Article  CAS  Google Scholar 

  91. Reddoch, A.H., Konishi, S., 1979, The Solvent Effect on di-t-Butyl Nitroxide. A Dipole-Dipole Model for Polar Solvents. J. Chem. Phys., 70: 2121–2130

    Article  CAS  Google Scholar 

  92. Berliner, L.J., Reuben, J., eds, 1989, Spin Labeling: Theory and Applications, Biological Magnetic Resonance, Vol. 8, Plenum Publishing Corp., New York.

    Google Scholar 

  93. Berliner, L.J., ed. 1998, Spin Labeling: The Next Millenium, Biological Magnetic Resonance, Vol. 14, Plenum Publishing Corp., New York.

    Google Scholar 

  94. Lebedev, Y.S., 1990, High-Frequency Continuous-Wave Electron Spin Resonance, In Modern Pulsed and Continuous-Wave Electron Spin Resonance, eds Kevan, L., Bowman, M.K., pp. 365–404. Wiley, New York.

    Google Scholar 

  95. Ondar, M.A., Grinberg, O.Y., Doubinskii, A.A., Lebedev, Y.S., 1985, Study of the Effect of the Medium on the Magnetic Resonance Parameters of Nitroxyl Radicals by High-Resolution EPR Spectroscopy. Soy. J. Chem. Phys., 3: 781–792

    Google Scholar 

  96. Budil, D.E., Earle, K.A., Freed, J.H., 1993, Full Determination of the Rotational Diffusion Tensor by Electron Paramagnetic Resonance at 250 GHz. J. Phys. Chem., 97: 1294–1303

    Article  CAS  Google Scholar 

  97. Earle, K.A., Moscicki, J.K., Ge, M.T., D.E.Budil, J.H.Freed, 1994, 250-GHz Electron Spin Resonance Studies of Polarity Gradients Along the Aliphatic Chains in Phospholipid Membranes. Biophys. J., 66: 1213–1221

    Google Scholar 

  98. Marsh, D., Kurad, D., Livshits, V.A., 2002, High-Field Electron Spin Resonance of Spin Labels in Membranes. Chem. Phys. Lipids, 116: 93–114

    Article  PubMed  CAS  Google Scholar 

  99. Hubbell, W.L., Gross, A., Langen, R., Leitzow, M.A., 1998, Recent Advances in Site-Directed Spin Labeling of Proteins. Curr. Opin. Struct. Biol., 8: 649–656

    Article  PubMed  CAS  Google Scholar 

  100. Hubbell, W.L., McHaourab, H.S., Altenbach, C., Leitzow, M.A., 1996, Watching Proteins Move Using Site-Directed Spin Labeling. Structure, 4: 779–783

    Article  PubMed  CAS  Google Scholar 

  101. Steinhoff, H.-J., 2002, Methods for Study of Protein Dynamics and Protein-Protein Interaction in Protein-Ubiquitination by Electron Paramagnetic Resonance Spectroscopy. Frontiers in Bioscience, 7: 97–110

    Article  Google Scholar 

  102. Feix, J.B., Klug, C.S., 1998, Site-Directed Spin Labeling of Membrane Proteins and Peptide-Membrane Interactions, In Spin Labeling: The Next Millenium, Biological Magnetic Resonance, Vol. 14, ed. Berliner, L., pp. 251–281. Plenum Publishing Corp., New York.

    Google Scholar 

  103. Pfeiffer, M., Rink, T., Gerwert, K., Oesterhelt, D., Steinhoff, H.-J., 1999, Site-Directed Spin Labeling Reveals the Orientation of the Amino Acid Side Chains in the E-F Loop of Bacteriorhodopsin. J. Mol. Biol., 287: 163–172

    Article  PubMed  CAS  Google Scholar 

  104. Griffith, O.H., Dehlinger, P.J., Van, S.P., 1974, Shape of the Hydrophobic Barrier of Phospholipid Bilayers. Evidence for Water Penetration in Biological Membranes. J. Membrane Biol., 15: 159–192

    Article  CAS  Google Scholar 

  105. Plato, M., Steinhoff, H.-J., Wegener, C., Törring, J.T., Savitsky, A., •Mtibius, K., 2002, Molecular Orbital Study of Polarity and Hydrogen Bonding Effects on the G and Hyperfine Tensors of Site Directed NO Spin Labeled Bacteriorhodopsin. Mol. Phys., 100: 3711–3721

    Google Scholar 

  106. Dencher, N.A., Dresselhaus, D., Zaccai, G., Btildt, G., 1989, Structural Changes in Bacteriorhodopsin During Proton Translocation Revealed by Neutron Diffraction. Proc. Natl. Acad. Sci. USA, 86: 7876–7879

    Article  PubMed  CAS  Google Scholar 

  107. Gerwert, K., Souvignier, G., Hess, B., 1990, Simultaneous Monitoring of Light-Induced Changes in Protein Side-Group Protonation, Chromophore, Isomerization, and Backbone Motion of Bacteriorhodopsin by Time-Resolved Fourier-Transform Infrared Spectroscopy. Proc. Natl. Acad. Sci. USA, 87: 9774–9778

    Article  PubMed  CAS  Google Scholar 

  108. Steinhoff, H.-J., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H., Hubbell, W., 1994, Time Resolved Detection of Structural Changes During the Photocylce of Spin Labeled Bacteriorhodopsin. Science, 266: 105–107

    Article  PubMed  CAS  Google Scholar 

  109. Rink, T., Riesle, J., Oesterhelt, D., Gerwert, K., Steinhoff, H.-J., 1997, Spin Labeling Studies of the Conformational Changes in the Vicinity of D36, D38, T46 and E161 of Bacteriorhodopsin During the Photocycle. Biophys. J., 73: 983–993

    Article  PubMed  CAS  Google Scholar 

  110. Bennati, M., Gerfen, G.J., Martinez, G.V., Griffin, R.G., Singel, D.J., Millhauser, G.L., 1999, Nitroxide Side-Chain Dynamics in a Spin-Labeled Helix-Forming Peptide Revealed by High-Frequency (139.5-GHz) EPR Spectroscopy. J. Magn. Reson., 139: 281–286

    Article  PubMed  CAS  Google Scholar 

  111. Coremans, J.W.A., Gastel, M.v., Poluektov, O.G., Groenen, E.J.J., Blaauwen, T.d., Pouderoyen, G.v., Canters, G.W., Nar, H., Hammann, C., Messerschmidt, A., 1995, An ENDOR and ESEEM Study of the Blue Copper Protein Azurin. Chem. Phys. Lett., 235: 202–210

    Article  CAS  Google Scholar 

  112. Bloeß, A., Möbius, K., Prisner, T.F., 1998, High-Frequency/High-Field Electron Spin Echo Envelope Modulation Study of Nitrogen Hyperfine and Quadrupole Interactions on a Disordered Powder Sample. J. Magn. Reson., 134: 30–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Möbius, K., Savitsky, A., Fuchs, M. (2004). Primary Processes in Photosynthesis: What do we learn from High-Field EPR Spectroscopy?. In: Grinberg, O.Y., Berliner, L.J. (eds) Very High Frequency (VHF) ESR/EPR. Biological Magnetic Resonance, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4379-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4379-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3442-0

  • Online ISBN: 978-1-4757-4379-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics