Skip to main content

Technicolor and Compositeness

  • Chapter
Unification and Supersymmetry

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 371 Accesses

Abstract

In the previous chapters we have emphasized that while the success of the SU(2) L × U(1) Y × SU(3) C model has indicated that the unified gauge theories are perhaps the right theoretical framework for the study of quark-lepton interactions, it still leaves a lot of questions unanswered. Some of the outstanding questions are:

  1. (a)

    the nature of the Higgs bosons and the origin of electro-weak symmetry breaking;

  2. (b)

    the apparent superfluous replication of quarks and lepton (and even Higgs bosons if electro-weak symmetry is higher); and

  3. (c)

    the origin of fermion masses which are much smaller than the scale of electro-weak symmetry breaking: for instance, m e,u,d ~ 10−5 Λ W .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Susskind, Phys. Rev. D20, 2619 (1979); S. Weinberg, Phys. Rev. D19, 1277 (1979).

    Article  Google Scholar 

  2. E. Fahri and L. Susskind, Phys. Rev. D20, 3404 (1979); S. Dimopoulos, Nucl. Phys. B169, 69 (1980).

    Google Scholar 

  3. S. Simopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979); E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).

    Google Scholar 

  4. S. Dimopoulos and J. Ellis, Nucl. Phys. B182, 505 (1981).

    Article  ADS  Google Scholar 

  5. J. C. Pati, in Superstrings, Compositeness and Cosmology (edited by S. Gates and R. N. Mohapatra ), World Scientific, Singapore, 1987, p. 462;

    Google Scholar 

  6. J. Calmet, S. Narison, M. Perrottet, and E. DeRafael, Rev. Mod. Phys. 49, 21 (1977); T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 41, 1573 (1981); T. Kinoshita, B. Nizic, and Y. Okamoto, Phys. Rev. Lett. 53, 717 (1984).

    Google Scholar 

  7. R. Barbieri, L. Maiani, and R. Petronzio, Phys. Lett. 96B, 63 (1980); S. J. Brodsky and S. D. Drell, Phys. Rev. D22, 2236 (1980).

    Google Scholar 

  8. See, for instance, models of O. W. Greenberg and J. Sucher, Phys. Lett. 99B, 339 (1981); J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981).

    Google Scholar 

  9. O. W. Greenberg, R. N. Mohapatra, and M. Yasue, Phys. Rev. Lett. 51, 1737 (1983).

    Google Scholar 

  10. E. J. Eichten, K. D. Lane, and M. E. Peshkin, Phys. Rev. Lett. 50, 811 (1983).

    Article  ADS  Google Scholar 

  11. These bounds have been discussed in composite model framework by I. Bars, Nucl. Phys. B198, 269 (1982); and for a recent discussion of the conditions under which these bounds may be evaded, see O. W. Greenberg, R. N. Mohapatra, and S. Nussinov, Phys. Lett. 148B, 465 (1984).

    Google Scholar 

  12. B. Weinstein, in TSIMESS Workshop Proceedings, 1983 (edited by T. Goldman et al.), American Institute of Physics, New York, 1983.

    Google Scholar 

  13. G. ‘t Hooft, in Recent Developments in Gauge Theories, Plenum, New York, 1980, p. 135.

    Google Scholar 

  14. S. L. Alder, Phys. Rev. 177, 2426 (1969); R. Jackiw and J. S. Bell, Nuovo Cimeno, 60A, 47 (1969); S. L. Alder and W. Bardeen, Phys. Rev. 182, 1517 (1969).

    Article  ADS  Google Scholar 

  15. Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, Nucl. Phys. B177, 157 (1981).

    Article  ADS  Google Scholar 

  16. J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).

    ADS  Google Scholar 

  17. J. C. Pati, O. W. Greenberg, and J. Sucher (Ref. [8]).

    Google Scholar 

  18. T. Applequist and J. Carrazone, Phys. Rev. D11, 2856 (1975).

    ADS  Google Scholar 

  19. J. Preskill and S. Weinberg, Texas preprint, 1981.

    Google Scholar 

  20. D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983); E. Witten, Phys. Rev. Lett. 51, 2351 (1983); S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).

    ADS  Google Scholar 

  21. They are analogous to the massless Goldstone—Majoron boson suggested by Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. 98B, 265 (1981).

    Google Scholar 

  22. For an apparent exception to this argument see an E(6) hypercolor model by Y. Tosa, J. Gibson, and R. E. Marshak, Private communication, 1984.

    Google Scholar 

  23. S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980); See also E. C.G. Sudarshan, Phys. Rev. D (1981).

    Google Scholar 

  24. D. A. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D17, 1529 (1978); M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).

    Google Scholar 

  25. L. Abbott and E. Farhi, Phys. Lett. 1O1B, 69 (1981); H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B, 319 (1981); R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981); For a review see R. N. Mohapatra, Proceedings of the Telemark Neutrino Mass Mini-Conference, 1982, American Institute of Physics, New York, 1982.

    Google Scholar 

  26. J. D. Bjorken, Phys. Rev. D19, 335 (1979); P. Q. Hung and J. J. Sakurai, Nucl. Phys. B143, 81 (1978).

    Article  ADS  Google Scholar 

  27. R. Barbieri and R. N. Mohapatra, Phys. Lett. 120B, 195 (1982).

    Google Scholar 

  28. D. Schildknecht, in Proceedings of the Europhysics Study Conference on Electroweak Effects at High Energies (edited by H. Newman ), Plenum, New York, 1983.

    Google Scholar 

  29. U. Baur, H. Fritzsch, and H. Faissner, Phys. Lett. 135B, 313 (1984).

    Google Scholar 

  30. A. Masiero, R. N. Mohapatra, and R. D. Peccei, Nucl. Phys. B192, 66 (1981).

    Article  ADS  Google Scholar 

  31. A. Masiero and R. N. Mohapatra, Phys. Lett. 103B, 343 (1981).

    Google Scholar 

  32. Y. Nambu, 1988 International Workshop on New Trends in Strongly Coupled Gauge Theories (edited by M. Bando et al.), World Scientific, Singapore, 1989, P. 3.

    Google Scholar 

  33. V. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. B221 177 (1989).

    Google Scholar 

  34. W. Bardeen, C. Hill, and M. Lindner, Phys. Rev. D41, 1647 (1990).

    ADS  Google Scholar 

  35. B. Pendleton and G. G. Ross, Phys. Lett. 98B 291 (1981); C. Hill, Phys. Rev. D24, 691 (1981); C. Hill, C. Leung, and S. Rao, Nucl. Phys. B262, 517 (1985).

    Google Scholar 

  36. M. Luty, Phys. Rev. D41 2893 (1990); M. Suzuki, Phys. Rev. D41 3457 (1990).

    Google Scholar 

  37. T. Clark, S. Love, and W. Bardeen, Phys. Lett. B237, 235 (1990).

    Google Scholar 

  38. K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 66 556 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1992). Technicolor and Compositeness. In: Unification and Supersymmetry. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4373-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4373-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4375-3

  • Online ISBN: 978-1-4757-4373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics