The SU(2)L × U(1) Model

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


In this section we will apply the ideas of spontaneously broken gauge theories to construct the first successful model of electro-weak interaction of quarks and leptons. As we discussed in the Introduction the observed universality of the four-Fermi coupling of weak-decay processes suggests the existence of a hidden symmetry of weak interactions, and the symmetry manifests itself not through the existence of degenerate multiplets but through broken local symmetries. The SU(2) L × U(1) model of Glashow, Weinberg, and Salam [1] provides a realization of this idea in the framework of a renormalizable field theory, and the recent discovery of W ±- and Z-bosons in the proton-antiproton collider experiments [2] has proved the correctness of these ideas and given a boost to the study of spontaneously broken non-abelian gauge theories as the way to probe further into the structure of quark-lepton interactions. This will be explored in the subsequent sections.


Higgs Boson Gauge Boson Yukawa Coupling Radiative Correction Higgs Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. L. Glashow, Nucl. Phys. 22, 579 (1961);CrossRefGoogle Scholar
  2. A. Salam and J. C. Ward, Phys. Lett. 13, 168 (1964);MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);ADSCrossRefGoogle Scholar
  4. A. Salam, in Elementary Particle Theory (edited by N. Svartholm ), Almquist and Forlag, Stockholm, 1968;Google Scholar
  5. For an excellent review, seeGoogle Scholar
  6. E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973).ADSCrossRefGoogle Scholar
  7. UA1 Collaboration, G. Arnison et al., Phys. Lett. 122B 103 (1983);Google Scholar
  8. UA2 Collaboration, M. Banner et al., Phys. Lett. 122B 476 (1983).Google Scholar
  9. [3]
    J. E. Kim, P. Langacker, M. Levine, and H. H. Williams, Rev. Mod. Phys. 53, 211 (1980).ADSCrossRefGoogle Scholar
  10. [4]
    See, for instanceGoogle Scholar
  11. M. Jonker et al. Phys. Lett. 99B, 265 (1981).Google Scholar
  12. [5]
    B. Kayser, E. Fishbach, S. P. Rosen, and H. Spivack, Phys. Rec. D20, 87 (1979).ADSGoogle Scholar
  13. C. Y. Prescott et al., Phys. Lett. 77B 347 (1978).Google Scholar
  14. [7]
    P. Bucksbaum, E. Commins, and L. Hunter, Phys. Rev. Lett. 46, 640 (1981);ADSCrossRefGoogle Scholar
  15. L. M. Barkov, M. Zolotorev, and I. Khriplovich, Soy. Phys. Usp. 23, 713 (1980);ADSCrossRefGoogle Scholar
  16. M. A. Bouchiat et al., Phys. Lett. 117B, 358 (1982);Google Scholar
  17. J. Hollister et al., Phys. Lett. 46 643 (1981).Google Scholar
  18. a] For a review, seeGoogle Scholar
  19. Albrecht Bohm, Proceedings of the SLAC Summer Institute (edited by M. Zipf et al.),Stanford, 1983.Google Scholar
  20. [8]
    W. J. Marciano and A. Sirlin, Phys. Rev. D29, 945 (1984);ADSCrossRefGoogle Scholar
  21. M. Böhm, W. Hollik, and H. Spiesberger, Fortsch. Phys. 34, 687 (1986);ADSCrossRefGoogle Scholar
  22. D. Kennedy and B. W. Lynn, Nucl. Phys. B322, 1 (1989).ADSCrossRefGoogle Scholar
  23. a] For an incomplete list of papers on radiative corrections in gauge theories, seeGoogle Scholar
  24. K. I. Aoki, Z. Hioki, R. Kawabe, M. Konuma, and T. Muta, Prog. Theor. Phys. Suppl. 73, 1 (1982);Google Scholar
  25. S. Sakakibara, Proceedings of the Topical Conference on Radiative Corrections in SU(2) L x U(1) Theories, Trieste, 1983;Google Scholar
  26. For other related work on radiative corrections in SU(2)L x U(1) theories, seeGoogle Scholar
  27. W. J. Marciano and A. Sirlin, Phys. Rev. D22, 2695 (1980);ADSGoogle Scholar
  28. A. Sirlin and W. J. Marciano, Nucl. Phys. B189, 442 (1981);ADSCrossRefGoogle Scholar
  29. F. Antonelli, M. Consoli, and G. Corbo, Phys. Lett. 91B, 90 (1980);Google Scholar
  30. C. Llewellynsmith and J. Wheater, Phys. Lett. 105B, 486 (1981);Google Scholar
  31. J. Wheater and C. Llewellynsmith, Nucl. Phys. B208, 27 (1982);ADSCrossRefGoogle Scholar
  32. S. Sakakibara, Phys. Rev. D24, 1149 (1981);ADSGoogle Scholar
  33. M. Veltman, Phys. Lett. 91B, 95 (1980);Google Scholar
  34. R. N. Mohapatra and G. Senjanovic, Phys. Rev. D19, 2165 (1979);ADSGoogle Scholar
  35. M. J. Musolf and B. Holstein, Phys. Rev. Lett. 65 (1990).Google Scholar
  36. [9]
    A. Sirlin and W. Marciano, Nucl. Phys. B189, 442 (1981);ADSCrossRefGoogle Scholar
  37. C. Llewellynsmith and J. Wheater, Phys. Lett. 105B, 486 (1981).Google Scholar
  38. G. Arnison et al., Phys. Lett. 126B 398 (1983);Google Scholar
  39. P. Bagnaia et al., Phys. Lett. 129B 130 (1983);Google Scholar
  40. G. Arnison et al., Phys. Lett. 129B 273 (1983).Google Scholar
  41. [11]
    L. DiLella, Lecture Notes, CERN (1985), unpublished.Google Scholar
  42. [12]
    W. Marciano, Talk Presented at Proton—Antiproton Collider Physics, Switzerland, 1984;Google Scholar
  43. W. Marcian and Z. Parsa, Proceedings of the 1982 DPE Summer Study, 1982.Google Scholar
  44. [13]
    S. L. Glashow, J. Illiopoulos, and L. Mariani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  45. [14]
    M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).ADSCrossRefGoogle Scholar
  46. [15]
    B. R. Martin, E. de Rafael, and J. Smith, Phys. Rev. D1 (1970).Google Scholar
  47. [16]
    R. N. Mohapatra, J. Subbarao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968).ADSCrossRefGoogle Scholar
  48. [17]
    S. Weinberg, Phys. Rev. Lett. 36, 294 (1976);ADSCrossRefGoogle Scholar
  49. A. Linde, JETP Lett. 23, 73 (1976).ADSGoogle Scholar
  50. [18]
    S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar
  51. [19]
    D. A. Dicus and V. S. Mathur, Phys. Rev. D7, 3111 (1973);ADSGoogle Scholar
  52. B. W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D16, 1519 (1977);ADSGoogle Scholar
  53. M. Veltman, Acta Phys. Polon. B8, 475 (1977).Google Scholar
  54. [20]
    T. Rizzo, Phys. Rev. D22, 722 (1980).MathSciNetADSGoogle Scholar
  55. [21]
    H. Georgi, S. L. Glashow, M. Machachek, and D. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978);ADSCrossRefGoogle Scholar
  56. See also H. Gordon, W. Marciano, F. E. Paige, P. Grannis, S. Naculich, and H. H. Williams, Proceedings of the 1982 DPF Summer Study on Elementary Particle Physics, Snowmass, 1982, p. 161.Google Scholar
  57. [21a]
    See review talk by A. Jawahery, Int. Conference on High Energy Physics,1990, Singapore.Google Scholar
  58. [22]
    L. Hall and M. Wise, Nucl. Phys. B187, 397 (1981);ADSCrossRefGoogle Scholar
  59. M. Barnett, G. Senjanovic, and D. Wyler, ITP Santa Barbara preprint, (1984);Google Scholar
  60. J. M. Frere, M. Gavela, and J. Varmaseren, Phys. Lett. 125, 275 (1983).Google Scholar
  61. [23]
    For recent reviews and references for Higgs boson effects, see Higgs Hunters’ Guide by H. Haber, J. Gunion, G. Kane, and S. Dawson (to be published).Google Scholar
  62. M. Sher, Phys. Rep. 179, 274 (1989).ADSCrossRefGoogle Scholar
  63. [24]
    N. G. Deshpande, Oregon Preprint (1981);Google Scholar
  64. R. Foot, G. C. Joshi, H. Lew, and R. Volkas, Mod. Phys. Lett. A5, 95 (1990).ADSCrossRefGoogle Scholar
  65. [25]
    K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett, 63, 938 (1989).ADSCrossRefGoogle Scholar
  66. a] For further discussion of change quantization from anomaly constraints, seeGoogle Scholar
  67. C. Geng and R. Marshak, Phys. Rev. D13, 693 (1989);Google Scholar
  68. P. Ramond, J. Minahan, and R. Warner, Phys. Rev. D41, 715 (1990);Google Scholar
  69. S. Rudaz, Phys. Rev. D41, 2619 (1990);ADSGoogle Scholar
  70. E. Golowich and P. Pal. Phys. Rev. D41, 3537 (1990).ADSGoogle Scholar
  71. [26]
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);ADSCrossRefGoogle Scholar
  72. F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979);ADSCrossRefGoogle Scholar
  73. A. H. Weldon and A. Zee, Nucl. Phys. B173, 269 (1980);ADSCrossRefGoogle Scholar
  74. R. N. Mohapatra, Proceedings of the First Workshop on Grand Unification (edited by P. Frampton, H. Georgi, and S. L. Glashow ), Math Sci. Press, Brookline, MA, 1980.Google Scholar
  75. For excellent recent reviews, seeGoogle Scholar
  76. J. D. Vergados, Phys. Rep. (1986) (to appear).Google Scholar
  77. G. Costa and M. Zwirner, Rev. Nuovo. Cim. (1886) (to appear).Google Scholar
  78. C. Burges and H. Schnitzer, Nucl. Phys. B228, 464 (1983).ADSCrossRefGoogle Scholar
  79. M. K. Gaillard, Proceedings of the Workshop on Intense Medium Energy Sources of Strangeness (edited by T. Goldman, H. Haber, and H. F. Sadrozinski ), ( AIP ), New York 1983, p. 54.Google Scholar
  80. [27]
    The latest experimental situation in weak interaction has recently been summarized inGoogle Scholar
  81. G. Barbiellini and C. Santoni, Rev. Nuovo Cim. (1986) (to appear).Google Scholar
  82. Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations