Skip to main content

Spontaneous Symmetry Breaking, Nambu-Goldstone Bosons, and the Higgs Mechanism

  • Chapter
Unification and Supersymmetry

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 374 Accesses

Abstract

A Lagrangian for a physical system may be invariant under a given set of symmetry [1] transformations; but how the symmetry is realized in nature depends on the properties of the ground state. In field theories the ground state is the vacuum state. We will, therefore, have to know how the vacuum state responds to symmetry transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an excellent discussion of and references on symmetries and spontaneously broken symmetries, see

    Google Scholar 

  2. S. Weinberg, Brandeis Lectures, 1970;

    Google Scholar 

  3. M. A. B. Beg, Lectures Notes in Mexico, 1971;

    Google Scholar 

  4. G. Guralnik, C. R. Hagen, and T. W. B. Kibble, Advances in High-Energy Physics (edited by R. Cool and R. E. Marshak ), Wiley, New York, 1969.

    Google Scholar 

  5. R. Gatto, A Basic Course in Modern Weak Interaction Theory,Bologna preprint (1979) (unpublished).

    Google Scholar 

  6. Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Lett. 98B, 265 (1981).

    Google Scholar 

  7. For a survey of known limits on long-range forces, see

    Google Scholar 

  8. G. Feinberg and J. Sucher, Phys. Rev. D20, 1717 (1979).

    Article  ADS  Google Scholar 

  9. G. Gelmini, S. Nussinov, and T. Y’anagida, Nucl. Phys. B219, 31 (1983);

    Article  ADS  Google Scholar 

  10. H. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys. B193, 297 (1981); J. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984).

    Google Scholar 

  11. G. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).

    Google Scholar 

  12. R. Barbieri, R. N. Mohapatra, D. V. Nanopoulos, and D. Wyler, Phys. Lett. 107B, 80 (1981).

    Google Scholar 

  13. N. Ramsey and R. F. Code, Phys. Rev. A4, 1945 (1971).

    Article  Google Scholar 

  14. R. Barbieri and R. N. Mohapatra, Z. Phys. C.11, 175 (1981);

    Google Scholar 

  15. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Reiss, Phys. Lett. 115B, 217 (1982).

    Google Scholar 

  17. J. E. Kim, Phys. Rev. Lett. 43, 103 (1979);

    Article  ADS  Google Scholar 

  18. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 101B, 199 (1981);

    Google Scholar 

  19. D. Chang, R. N. Mohapatra, S. Nussinov, Phys. Rev. Lett. 55, 2835 (1985).

    Article  ADS  Google Scholar 

  20. R. V. Eotvos, D. Pekar, and E. Fekele, Ann. Phys. 68, 11 (1922).

    ADS  Google Scholar 

  21. V. B. Braginsky and V. I. Panov, Soy. Phys. JETP 34 464 (1972); For other related experiments, see

    Google Scholar 

  22. H. J. Paik, Phys. Rev. D19, 2320 (1979);

    Google Scholar 

  23. H. J. Paik, H. A. Chan, and M. Moody, Proceedings of the Third Marcel Grossmann Meeting on General Relativity, 1983, p. 839;

    Google Scholar 

  24. R. Spero, J. K. Hoskins, R. Newman, J. Pellam, and J. Schultz, Phys. Rev. Lett. 44, 1645 (1980).

    Article  ADS  Google Scholar 

  25. D. R. Long, Phys. Rev. D9, 850 (1974);

    Google Scholar 

  26. Y. Fujii and K. Mima, Phys Lett. 79B, 138 (1978);

    Google Scholar 

  27. Nature 260 417 (1976).

    Google Scholar 

  28. D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1829 (1978).

    ADS  Google Scholar 

  29. M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 18, 1522 (1982).

    Article  ADS  Google Scholar 

  30. S. Bludman and A. Klein, Phys. Rev. 131, 2363 (1962).

    MathSciNet  Google Scholar 

  31. G. ‘t Hooft, Nucl. Phys. 33B, 173 (1971).

    Article  ADS  Google Scholar 

  32. For a detailed discussion of renormalizability of Yang—Mills theories, see

    Google Scholar 

  33. E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973);

    Google Scholar 

  34. G. ‘t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972);

    Article  ADS  Google Scholar 

  35. H. Kluberg-Stein and J. B. Zuber, Phys. Rev. D12, 467, 482, 3159 (1975);

    Google Scholar 

  36. C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys. 42, 127 (1975);

    Article  MathSciNet  ADS  Google Scholar 

  37. J. C. Taylor, Nucl. Phys. B33, 436 (1971);

    Article  ADS  Google Scholar 

  38. J. Zino-Justin, Lecture Notes, Bonn, 1974.

    Google Scholar 

  39. S. Adler, Phys. Rev. 177, 2426 (1969);

    Article  ADS  Google Scholar 

  40. J. Bell and R. Jackiw, Nuovo Cimento, 51A, 47 (1969); W. Bardeen, Phys. Rev. 184, 1848 (1969).

    Article  ADS  Google Scholar 

  41. D. Gross and R. Jackiw, Phys. Rev. D6, 477 (1972);

    Article  ADS  Google Scholar 

  42. C. Bouchiat, J. Illiopoulos, and Ph. Meyer, Phys Lett. 38B, 519 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1992). Spontaneous Symmetry Breaking, Nambu-Goldstone Bosons, and the Higgs Mechanism. In: Unification and Supersymmetry. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4373-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4373-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4375-3

  • Online ISBN: 978-1-4757-4373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics