Spontaneous Symmetry Breaking, Nambu-Goldstone Bosons, and the Higgs Mechanism

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


A Lagrangian for a physical system may be invariant under a given set of symmetry [1] transformations; but how the symmetry is realized in nature depends on the properties of the ground state. In field theories the ground state is the vacuum state. We will, therefore, have to know how the vacuum state responds to symmetry transformations.


Gauge Field Goldstone Boson Symmetry Transformation Coset Space Canonical Commutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For an excellent discussion of and references on symmetries and spontaneously broken symmetries, seeGoogle Scholar
  2. S. Weinberg, Brandeis Lectures, 1970;Google Scholar
  3. M. A. B. Beg, Lectures Notes in Mexico, 1971;Google Scholar
  4. G. Guralnik, C. R. Hagen, and T. W. B. Kibble, Advances in High-Energy Physics (edited by R. Cool and R. E. Marshak ), Wiley, New York, 1969.Google Scholar
  5. R. Gatto, A Basic Course in Modern Weak Interaction Theory,Bologna preprint (1979) (unpublished).Google Scholar
  6. [2]
    Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Lett. 98B, 265 (1981).Google Scholar
  7. [3]
    For a survey of known limits on long-range forces, seeGoogle Scholar
  8. G. Feinberg and J. Sucher, Phys. Rev. D20, 1717 (1979).ADSCrossRefGoogle Scholar
  9. [4]
    G. Gelmini, S. Nussinov, and T. Y’anagida, Nucl. Phys. B219, 31 (1983);ADSCrossRefGoogle Scholar
  10. H. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys. B193, 297 (1981); J. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984).Google Scholar
  11. [5]
    G. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).Google Scholar
  12. [6]
    R. Barbieri, R. N. Mohapatra, D. V. Nanopoulos, and D. Wyler, Phys. Lett. 107B, 80 (1981).Google Scholar
  13. [7]
    N. Ramsey and R. F. Code, Phys. Rev. A4, 1945 (1971).CrossRefGoogle Scholar
  14. [8]
    R. Barbieri and R. N. Mohapatra, Z. Phys. C.11, 175 (1981);Google Scholar
  15. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982);MathSciNetADSCrossRefGoogle Scholar
  16. D. Reiss, Phys. Lett. 115B, 217 (1982).Google Scholar
  17. [9]
    J. E. Kim, Phys. Rev. Lett. 43, 103 (1979);ADSCrossRefGoogle Scholar
  18. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 101B, 199 (1981);Google Scholar
  19. D. Chang, R. N. Mohapatra, S. Nussinov, Phys. Rev. Lett. 55, 2835 (1985).ADSCrossRefGoogle Scholar
  20. [10]
    R. V. Eotvos, D. Pekar, and E. Fekele, Ann. Phys. 68, 11 (1922).ADSGoogle Scholar
  21. [11]
    V. B. Braginsky and V. I. Panov, Soy. Phys. JETP 34 464 (1972); For other related experiments, seeGoogle Scholar
  22. H. J. Paik, Phys. Rev. D19, 2320 (1979);Google Scholar
  23. H. J. Paik, H. A. Chan, and M. Moody, Proceedings of the Third Marcel Grossmann Meeting on General Relativity, 1983, p. 839;Google Scholar
  24. R. Spero, J. K. Hoskins, R. Newman, J. Pellam, and J. Schultz, Phys. Rev. Lett. 44, 1645 (1980).ADSCrossRefGoogle Scholar
  25. [12]
    D. R. Long, Phys. Rev. D9, 850 (1974);Google Scholar
  26. Y. Fujii and K. Mima, Phys Lett. 79B, 138 (1978);Google Scholar
  27. Nature 260 417 (1976).Google Scholar
  28. [13]
    D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1829 (1978).ADSGoogle Scholar
  29. [14]
    M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 18, 1522 (1982).ADSCrossRefGoogle Scholar
  30. [15]
    S. Bludman and A. Klein, Phys. Rev. 131, 2363 (1962).MathSciNetGoogle Scholar
  31. [16]
    G. ‘t Hooft, Nucl. Phys. 33B, 173 (1971).ADSCrossRefGoogle Scholar
  32. [17]
    For a detailed discussion of renormalizability of Yang—Mills theories, seeGoogle Scholar
  33. E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973);Google Scholar
  34. G. ‘t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972);ADSCrossRefGoogle Scholar
  35. H. Kluberg-Stein and J. B. Zuber, Phys. Rev. D12, 467, 482, 3159 (1975);Google Scholar
  36. C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys. 42, 127 (1975);MathSciNetADSCrossRefGoogle Scholar
  37. J. C. Taylor, Nucl. Phys. B33, 436 (1971);ADSCrossRefGoogle Scholar
  38. J. Zino-Justin, Lecture Notes, Bonn, 1974.Google Scholar
  39. [18]
    S. Adler, Phys. Rev. 177, 2426 (1969);ADSCrossRefGoogle Scholar
  40. J. Bell and R. Jackiw, Nuovo Cimento, 51A, 47 (1969); W. Bardeen, Phys. Rev. 184, 1848 (1969).ADSCrossRefGoogle Scholar
  41. [19]
    D. Gross and R. Jackiw, Phys. Rev. D6, 477 (1972);ADSCrossRefGoogle Scholar
  42. C. Bouchiat, J. Illiopoulos, and Ph. Meyer, Phys Lett. 38B, 519 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations