Beyond N = 1 Supergravity

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


So far, in this book, we have described the philosophical motivations, the mathematical foundations, and working principles for locally supersymmetric unification that described all four forces of nature, weak electromagnetic, and strong as well as gravitational, within one theoretical framework. A theorist’s dream is, however, more ambitious and rightly so, since, even the very elegant N = 1 supergravity leaves many questions unanswered: a partial list includes:
  1. (i)

    The gauge symmetry describing electro-weak unification has to be put in by hand. Thus, we really need two fundamental principles to derive the laws of physics: first, the equivalence principle to derive gravitational forces; and second, the local Yang-Mills symmetry to derive the rest of the interactions. It certainly would be more satisfying if both these principles could be combined into one.

  2. (ii)

    The matter fields are chosen to fit phenomenology rather than being an outcome of the theoretical principles. It would certainly be more desirable if the basic principle that yields the physical laws could also yield the matter multiplets.

  3. (iii)

    Finally, the age-old problem of divergences that beset the local field theories since their introduction to physics does not get resolved by the N = 1 supergravity theories. In fact, this problem is worse for N = 1 supergravity theories than either globaly supersymmetric or non-supersymmetric theories. In that sense, it could be construed as a step backward in the quest for the ultimate theory.



Gauge Group Clifford Algebra Supergravity Theory Supersymmetric Theory Extended Supersymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Fayet, Nucl. Phys. B113, 135 (1976);MathSciNetADSCrossRefGoogle Scholar
  2. P. Fayet, Nucl. Phys. B149, 137 (1979);MathSciNetADSCrossRefGoogle Scholar
  3. M. F. Sohnius, K. Stella, and P. West, Nucl. Phys. B173, 127 (1980).ADSCrossRefGoogle Scholar
  4. [2]
    J. Bagger and E. Witten, Nucl. Phys. B222, 1 (1983).MathSciNetADSCrossRefGoogle Scholar
  5. [3]
    B. deWit, P. G. Lauwers, R. Philippe, S. Q. Su, and A. Van Proyen, preprint NIKHEF-H/83–13 (1983);Google Scholar
  6. P. Breitenlohner and M. Sohnius, Nucl. Phys. B165, 483 (1980).MathSciNetADSCrossRefGoogle Scholar
  7. [4]
    F. del Aguila, B. Brinstein, L. Hall, G. G. Ross, and P. West, HUTP 84/A001, 1984;Google Scholar
  8. S. Kalara, D. Chang, R. N. Mohapatra, and A. Gangopadhyaya, Phys. Lett. 145B, 323 (1984);Google Scholar
  9. J. P. Deredings, S. Ferrara, A. Masiero, and A. Van Proyen, Phys. Lett. 140B, 307 (1984).MathSciNetGoogle Scholar
  10. J. M. Frére, I. Meznicescu, and Y. P. Yao, Phys. Rev. D29, 1196 (1984);ADSGoogle Scholar
  11. A. Parkes and P. West, 127B, 353 (1983).Google Scholar
  12. [5]
    R. Haag, J. T. Lopuszanski, and M. Sohnius, Nucl. Phys. B88, 257 (1975).MathSciNetADSCrossRefGoogle Scholar
  13. [6]
    J. Koller, Cal. Tech. preprint 68–975, 1982;Google Scholar
  14. G. Sierra and P. K. Townsend, Ecole Normale preprint, LPTENS 83 /26, 1983;Google Scholar
  15. J. Sherk, Ecole Normale preprint, 1979;Google Scholar
  16. M. Duff, Lectures at the GIFT Summer School, San Feliu de Guixols, Spain, 1984.Google Scholar
  17. [7]
    P. G. O. Freund and M. Rubin, Phys. Lett. B97, 233 (1980).MathSciNetGoogle Scholar
  18. [8]
    M. Duff and C. N. Pope, in Supersymmetry and Supergravity ‘82 (edited by S. Ferrara et al.), World Scientific, Singapore, 1983.Google Scholar
  19. [9]
    M. Green and J. H. Schwarz, Phys. Lett. 149B, 117 (1984).MathSciNetGoogle Scholar
  20. [10]
    P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258, 46 (1985);MathSciNetADSCrossRefGoogle Scholar
  21. K. Pilch and A. N. Schellekens, Stony Brook preprint, 1985;Google Scholar
  22. E. Witten, Princeton preprint, 1985.Google Scholar
  23. [11]
    E. Bergshoeff, M. de Roo, B. de Wit, and P. Van Niuewenhuizen, Nucl. Phys. B195, 97 (1982).ADSCrossRefGoogle Scholar
  24. [12]
    G. F. Chapline and N. S. Manton, Phys. Lett. 120B, 105 (1983).MathSciNetGoogle Scholar
  25. [13]
    L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234, 269 (1983).MathSciNetADSCrossRefGoogle Scholar
  26. [14]
    D. Gross, J. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 502 (1985).MathSciNetADSCrossRefGoogle Scholar
  27. [15]
    M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi, and N. Seiberg, Nucl. Phys. B (1985) (in press);Google Scholar
  28. J. Breit, B. Ovrut, and G. Segre, Phys. Lett. B158, 33 (1985);Google Scholar
  29. A. Sen, Phys. Rev. Lett. 55, 33 (1985);ADSCrossRefGoogle Scholar
  30. J. P. Deredings, L. Ibanez, and H. P. Nilles, Phys. Lett. 155B, 65 (1985); and CERN preprint CERN-TH-4228/85, 1985;Google Scholar
  31. V. S. Kaplunovsky, Phys. Rev. Lett. 55, 1036 (1985);ADSCrossRefGoogle Scholar
  32. M. Dine and N. Seiberg, Phys. Rev. Lett. 55, 366 (1985);MathSciNetADSCrossRefGoogle Scholar
  33. V. S. Kaplunovsky and Chiara Nappi, Comments on Nuclear and Particle Physics (1986) (to appear).Google Scholar
  34. [16]
    F. Geursey, P. Ramond, and P. Sikivie, Phys. Lett. 60B, 117 (1976);Google Scholar
  35. Y. Achiman and B. Stech, Phys. Lett. 77B, 389 (1987);Google Scholar
  36. Q. Shafi, Phys. Lett. 79B, 301 (1978);Google Scholar
  37. P. K. Mohapatra, R. N. Mohapatra, and P. Pal, Phys. Rev. D (1986).Google Scholar
  38. [17]
    R. N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986);ADSCrossRefGoogle Scholar
  39. U. Sarkar and S. Nandi, Phys. Rev. Lett. 56, 564 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations