Skip to main content

Phenomenology of Supersymmetric Models

  • Chapter
Unification and Supersymmetry

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 372 Accesses

Abstract

In the previous three chapters we have laid the foundation for applying the ideas of supersymmetry to building models of particle physics. At present there exists a successful (at low energies) model of electro-weak and strong interactions—the standard SU(2) L × U(1) Y , × SU(3) c , model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. There exist several excellent recent reviews of the subject: H. Haber and G. Kane, Phys. Rep. 117, 76 (1984).

    Google Scholar 

  2. H. P. Nilles, Phys. Rep. 110, 1 (1984);

    Article  ADS  Google Scholar 

  3. R. Arnowitt, A. Chamseddine, and P. Nath, N = 1 Supergravity, World Scientific, Singapore, 1984.

    Google Scholar 

  4. P. Fayet, Nucl. Phys. B90, 104 (1975);

    Article  ADS  Google Scholar 

  5. R. K. Kaul and P. Majumdar, Nucl. Phys. B199, 36 (1982).

    Article  ADS  Google Scholar 

  6. C. S. Aulakh and R. N. Mohapatra, Phys. Lett. 121B, 147 (1983);

    Google Scholar 

  7. L. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984).

    Article  ADS  Google Scholar 

  8. G. G. Ross and J. W. F. Valle, Phys. Lett. 151B, 375 (1985).

    Google Scholar 

  9. CELLO: H. Behread et al., Phys. Lett. 114B 287 (1982);

    Google Scholar 

  10. JADE: W. Bartel et al., Phys. Lett. 114B 211 (1982);

    Google Scholar 

  11. MARK J: D. Barber et al., Phys. Rev. Lett. 45 1904 (1981);

    Google Scholar 

  12. TASSO: R. Brandelik et al., Phys. Lett. 117B 365 (1982).

    Google Scholar 

  13. M. K. Gaillard, L. Hall, and I. Hinchliffe, Phys. Lett. 116B, 279 (1982);

    Google Scholar 

  14. M. Kuroda, K. Ishikawa, T. Kobayashi, and S. Yamada, Phys. Lett. 127B, 467 (1983).

    Google Scholar 

  15. L. Gladney et al., Phys. Rev. Lett. 51 2253 (1983);

    Google Scholar 

  16. E. Fernandez et al., Phys. Rev. Lett. 52 22 (1984).

    Google Scholar 

  17. R. M. Barnett, H. E. Haber, and K. Lackner, Phys. Lett. 126B, 64 (1983).

    Google Scholar 

  18. For an exhaustive study see E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Fermilab preprint, 1984.

    Google Scholar 

  19. H. Haber and G. Kane, Nucl. Phys. B232, 333 (1984).

    Article  ADS  Google Scholar 

  20. B. Kayser, Private communication, 1983.

    Google Scholar 

  21. M. Chanowitz and S. Sharpe, Phys. Lett. 126B, 225 (1983);

    Google Scholar 

  22. A. Mitra and S. Ono, CERN preprint, 1983.

    Google Scholar 

  23. W. Y. Keung and A. Khare, Phys. Rev. D (1984).

    Google Scholar 

  24. a] G. Arnison et al., Phys. Lett. 139B 115 (1984).

    Google Scholar 

  25. G. Kane and J. Leveille, Phys. Lett. 112B, 227 (1982);

    Google Scholar 

  26. E. Reya and D. P. Roy, Phys. Rev. Lett. 53, 881 (1984);

    Article  ADS  Google Scholar 

  27. J. Ellis and H. Kowalski, CERN preprint, 1984.

    Google Scholar 

  28. S. Weinberg, Phys. Rev. Lett. 50, 387 (1983);

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Barger, R. W. Robinett, W. Y. Keung, and R. J. N. Phillips, Phys. Lett. 131B, 372 (1983);

    Google Scholar 

  30. A. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1972);

    Article  ADS  Google Scholar 

  31. D. A. Dicus, S. Nandi, W. Repko, and X. Tata, Phys. Rev. Lett. 51, 1030 (1983); Phys. Rev. D29, 67 (1984);

    ADS  Google Scholar 

  32. J. Ellis, J. Hagelin, D. V. Nanopoulos, and M. Srednicki, Phys. Leu. 127B, 233 (1983).

    ADS  Google Scholar 

  33. J. Baily et al., Nucl. Phys. B150 (1979).

    Google Scholar 

  34. P. Fayet, in Unification of the Fundamental Particle Interactions, (edited by S. Ferrara et al.) Plenum, New York, 1980, p. 587;

    Google Scholar 

  35. J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. 116B, 283 (1982);

    Google Scholar 

  36. R. Barbieri and L. Maiani, Phys. Lett. 117B, 203 (1982).

    Google Scholar 

  37. J. Ellis an D. V. Nanopoulos, Phys. Lett. 110B, 44 (1982);

    Google Scholar 

  38. R. Barbieri and R. Gatto, Phys. Lett. 110B, 211 (1982);

    Google Scholar 

  39. T. Inami and C. S. Lim, Nucl. Phys. B207, 533 (1982);

    Article  ADS  Google Scholar 

  40. B. A. Cambell, Phys. Rev. D28, 209 (1983);

    Google Scholar 

  41. J. Donoghue, H. P. Nilles, and D. Wyler, Phys. Lett. 128B, 55 (1983);

    Google Scholar 

  42. M. Suzuki, Phys. Lett. 115B, 40 (1982);

    Google Scholar 

  43. E. Franco and M. Mangano, Phys. Lett. 135B, 40 (1982).

    Google Scholar 

  44. M. Suzuki, Phys. Lett. 115B, 40 (1982);

    Google Scholar 

  45. M. Duncan, Nucl. Phys. B214, 21 (1983).

    Article  ADS  Google Scholar 

  46. T. K. Kuo and N. Nakagawa, Nuovo Cim. Lett. 36, 560 (1983);

    Article  Google Scholar 

  47. R. Barbieri and L. Maiani, Nucl. Phys. B224, 32 (1983);

    Article  ADS  Google Scholar 

  48. C. S. Lim, T. Inami, and N. Sakai, Phys. Rev. D29, 1488 (1984).

    ADS  Google Scholar 

  49. J. Ellis and J. Hagelin, Nucl. Phys. B217, 189 (1983).

    Article  ADS  Google Scholar 

  50. M. K. Gaillard, Y. C. Kao, I. H. Lee, and M. Suzuki, Phys. Lett. 123B, 241 (1983).

    Google Scholar 

  51. A. Raichoudhury et al.,CERN preprint, 1984;

    Google Scholar 

  52. P. Langacker and B. Sathiapalan, University of Pennsylvania preprint, 1984.

    Google Scholar 

  53. C. Nappi and B. Ovrut, Phys. Lett. 113B, 1751 (1982);

    Google Scholar 

  54. M. Dine and W. Fishier, Phys. Lett. 110B, 227 (1982);

    Google Scholar 

  55. L. Alvarez-Gaume, M. Claudson and M. Wise, Nucl. Phys. B207, 96 (1982);

    Article  ADS  Google Scholar 

  56. J. Ellis, L. Ibanez, and G. Ross, Phys. Lett. 113B, 283 (1982);

    Google Scholar 

  57. R. Barbieri, S. Ferrara, and D. Nanopoulos, Z. Phys. C13, 267 (1982).

    Google Scholar 

  58. C. S. Aulakh and R. N. Mohapatra, Phys. Lett. 119B, 136 (1983);

    Google Scholar 

  59. F. Zwirner, Phys. Lett. 132B, 103 (1983);

    Google Scholar 

  60. L. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984);

    Article  ADS  Google Scholar 

  61. I. H. Lee, Nucl. Phys. B246, 120 (1984);

    Article  ADS  Google Scholar 

  62. G. G. Ross and J. W. F. Valle, Phys. Lett. B151, 375 (1985);

    Google Scholar 

  63. J.Ellis et al., Phys. Lett. 150B 142 (1985);

    Google Scholar 

  64. S. Dawson, Nucl. Phys. B261, 297 (1985);

    Article  ADS  Google Scholar 

  65. R. N. Mohapatra, Phys. Rev. D34, 3457 (1986);

    Article  Google Scholar 

  66. V. Barger, G. Giudice, and T. Y. Han, Phys. Rev. D40 2987 (1989).

    ADS  Google Scholar 

  67. R. N. Mohapatra, ref. [24] and L. Ibanez, F. Queredo, and M. Quiros, CERN preprint, 1989. For calculation of g - 2 muon in the theories, see

    Google Scholar 

  68. M. Frank and C. S. Kalman, Phys. Rev. D38, 1469 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1992). Phenomenology of Supersymmetric Models. In: Unification and Supersymmetry. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4373-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4373-9_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4375-3

  • Online ISBN: 978-1-4757-4373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics