Experimental Pancreas Transplantation

  • Alan C. Farney
  • Mikel Prieto
  • Ari J. Cohen
  • Scott L. Nyberg
  • Mark D. Stegall


Since von Mering and Minkowski’s demonstration of diabetes in pancreatectomized dogs,1 animal research has played an important role in our understanding of diabetes and metabolism, transplant immunology, organ preservation, and developmental biology. Animal models have also improved surgical techniques in vascular and transplant surgery, empowering the transplant surgeon to make the first attempts and finally succeed in transplanting organs from one human to another.


Transplant Proc Pancreas Transplantation Islet Graft Fetal Pancreas Pancreas Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Mering J, Minkowski O. Diabetes mellitus nach pankrea-sexstirpation. Arch Exp Path Pharmak 1889; 26: 371–387.Google Scholar
  2. 2.
    Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172 (4379): 603–606.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakai I, Kaufman DB, Field MJ, et al. Differential effects of preexisting uremia and a synchronous kidney graft on pancreas allograft functional survival in rats. Transplantation 1992; 54: 17–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Konigsrainer A, Dietze O, Habringer C, et al. Morphology of acute rejection and corresponding cytological findings in exocrine secretion after pancreas transplantation in the rat. Transplantation 1991; 52: 770–777.PubMedCrossRefGoogle Scholar
  5. 5.
    Zheng T, Lu Z, Merideth N, et al. Early markers of pancreas transplant rejection. Am Surg 1992; 58: 630–633.PubMedGoogle Scholar
  6. 6.
    Tanaka S, Kamiike W, Ito T, et al. Generation of nitric oxide as a rejection marker in rat pancreas transplantation. Transplantation 1995; 60: 713–717.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson BF, Thomas G, Wiley KN, et al. Thromboxane and prostacyclin synthesis in experimental pancreas transplantation. Changes in parenchymal and vascular prostanoids. Transplantation 1993; 56: 1447–1453.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson BF, Wiley KN, Greaves M, et al. Urinary thromboxane and 6-keto-prostaglandin F1 alpha are early markers of acute rejection in experimental pancreas transplantation. Transplantation 1994; 58: 18–23.PubMedGoogle Scholar
  9. 9.
    Dietze O, Konigsrainer A, Habringer C, et al. Histologic classification of pancreatic allograft rejection in the rat. Transplant Proc 1992; 24: 932–933.PubMedGoogle Scholar
  10. 10.
    Dietze O, Konigsrainer A, Habringer C, et al. Histological features of acute pancreatic allograft rejection after pancreaticoduodenal transplantation in the rat. Transplant Int 1991; 4: 221–226.Google Scholar
  11. 11.
    Knoop M, McMahon RF, Jones CJ, Hutchinson IV. Apoptosis in pancreatic allograft rejection—ultrastructural observations. Exp Pathol 1991; 41: 219–224.PubMedCrossRefGoogle Scholar
  12. 12.
    Papadimitriou JC, Drachenberg CB, Wiland A, et al. Histologic grading of acute allograft rejection in pancreas needle biopsy: Correlation to serum enzymes, glycemia, and response to immunosuppressive treatment. Transplantation 1998; 66: 1741–1745.PubMedCrossRefGoogle Scholar
  13. 13.
    Purcell LJ, Mottram PL, Mandel TE. The transplantation of segmental pancreas isografts in nonobese diabetic mice. Transplant Proc 1992; 24: 2299.Google Scholar
  14. 14.
    Purcell LJ, Mottram PL, Green MK, Mandel TE. Transplantation of the segmental pancreas in STZ-treated diabetic mice. Transplant Proc 1992; 24 (l): 236–237.PubMedGoogle Scholar
  15. 15.
    Josephson MA, Schmeisser S, Sohn D, et al. Rat to mouse pancreas xenografts: Comparison to islet xenografts. Transplant Proc 1992; 24 (2): 653–654.PubMedGoogle Scholar
  16. 16.
    Schulak JA, Krishnamurthi V, Masih R, Robinson A. Effect of major histocompatibility disparity on mycophenolate mofetil immunosuppression in rat pancreas transplantation. Transplant Proc 1995; 27: 3010–3011.PubMedGoogle Scholar
  17. 17.
    Schulak JA, Masih R, Krishnamurthi V, Robinson A. Mycophenolate mofetil immunosuppression in rat pancreas allotransplantation. J Surg Res 1996; 60: 79–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki K, Kazui T, Kawabe A, et al. Immunosuppressive effect of FTY 720 on rat pancreas allograft. Transplant Proc 1998; 30: 3417–3418.PubMedCrossRefGoogle Scholar
  19. 19.
    Suzuki K, Kazui T, Kawabe A, et al. Beneficial immunosuppressive effect of FTY720 combined with intrathymic injection of splenic cells on rat pancreaticoduodenal allograft. Transplant Proc 1998; 30: 1067–1068.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen H, Wu J, Xu D, et al. Reversal of ongoing heart, kidney, and pancreas allograft rejection and suppression of accelerated heart allograft rejection in the rat by rapamycin. Transplantation 1993; 56: 661–666.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen H, Wu J, Xu D, et al. Rapamycin reverses acute heart, kidney, and pancreas allograft rejection and prevents accelerated heart allograft rejection in the rat. Transplant Proc 1993; 25 (1, pt 1): 719–720.PubMedGoogle Scholar
  22. 22.
    Chen HF, Wu JP, Luo HY, Daloze PM. Reversal of ongoing rejection of allografts by rapamycin. Transplant Proc 1991; 23: 2241–2242.PubMedGoogle Scholar
  23. 23.
    Chen HF, Wu JP, Luo HY, Daloze PM. The immunosuppressive effect of rapamycin on pancreaticoduodenal transplants in the rat. Transplant Proc 1991; 23: 2239–2240.PubMedGoogle Scholar
  24. 24.
    Stepkowski SM, Chen H, Daloze P, Kahan BD. Prolongation by rapamycin of heart, kidney, pancreas, and small bowel allograft survival in rats. Transplant Proc 1991; 23 (1, pt 1): 507–508.PubMedGoogle Scholar
  25. 25.
    Qi S, Chen H, Xu D, Daloze P. Prolongation of pancreas allograft survival by mycophenolate mofetil in the rat. Transplant Proc 1996; 28: 932–933.PubMedGoogle Scholar
  26. 26.
    Nakai I, Shimizu Y, Morita S, et al. Rat whole pancreaticoduodenal allotransplantation treated with 15-deoxyspergualin alone and with splenectomy. Transplant Proc 1995; 27: 3000–3001.Google Scholar
  27. 27.
    Jindal RM, Soltys K, Yost F, et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. Transplantation 1993; 56: 1275–1278.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen H, Qi S, Xu D, et al. Immunosuppressive effects of the cyclosporin derivative SDZIMM 125 on kidney allograft in the dog and small bowel and pancreas allografts in the rat. Clin Immunol Immunopathol 1996; 80: 76–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson BF, Henry L, Fox M, Raftery AT. Morphology of rejection in experimental pancreas transplantation and its modification by cyclosporin A administration. Int J Exp Pathol 1992; 73: 751–764.PubMedGoogle Scholar
  30. 30.
    Ohtsuka S, Hayashi S, Sato E, et al. The effect of short-term FK 506 therapy on pancreas transplantation using the cuff technique in rats. Transplant Proc 1992; 24: 912–914.PubMedGoogle Scholar
  31. 31.
    Yamashita T, Maeda Y, Ishikawa T, et al. Prolongation of pancreaticoduodenal allograft survival in rats by treatment with FK 506. Transplant Proc 1991; 23: 3219–3220.PubMedGoogle Scholar
  32. 32.
    du Toit DF, Muller C, Mouton Y, et al. Tacrolimus (FK506) monotherapy provides potent and significant suppression of allogeneic foetal rat pancreatic allograft rejection. Transplant Proc 1998; 30: 4073–4074.PubMedCrossRefGoogle Scholar
  33. 33.
    Guymer RH, Mandel TE. Urocanic acid as an immunosuppressant in allotransplantation in mice. Transplantation 1993; 55: 36–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Grochowicz PM, Bowen KM, Hibberd AD, et al. Cas-tanospermine, an inhibitor of glycoprotein processing, prolongs pancreaticoduodenal allograft survival. Transplant Proc 1992; 24: 2295–2296.PubMedGoogle Scholar
  35. 35.
    Chen H, Wu J, Luo H, Daloze P. Synergistic effect of rapamycin and cyclosporine in pancreaticoduodenal transplantation in the rat. Transplant Proc 1992; 24: 892–893.PubMedGoogle Scholar
  36. 36.
    Vu MD, Qi S, Xu D, et al. Synergistic effects of mycophenolate mofetil and sirolimus in prevention of acute heart, pancreas, and kidney allograft rejection and in reversal of ongoing heart allograft rejection in the rat. Transplantation 1998; 66: 1575–1580.PubMedCrossRefGoogle Scholar
  37. 37.
    du Toit DF, Muller C, Page B, et al. Immunosuppression with cyclosporin A in combination with mycophenolate mofetil suppresses rejection of allogeneic fetal rat pancreatic allografts. Transplant Proc 1998; 30 (8): 4092–4093.PubMedCrossRefGoogle Scholar
  38. 38.
    Konigsrainer A, Mark W, Hechenleitner P, et al. At what stage does pancreas allograft rejection become irreversible?: An experimental study. Transplantation 1997; 63 (5): 631–635.PubMedCrossRefGoogle Scholar
  39. 39.
    Muller CJ, Du Toit DF, Beyers AD, et al. Prolongation of rat fetal pancreas allograft survival using a nondepleting anti-CD4 monoclonal antibody W3/25. Transplant Proc 1998; 30: 4180–4183.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawabe A, Suzuki H, Kimura T, et al. Immunosuppressive effects of monoclonal antibodies against adhesion molecules in rat pancreas allografts. Transplant Proc 1994; 26: 1937–1938.PubMedGoogle Scholar
  41. 41.
    Kawabe A, Kimura T, Suzuki H, et al. Anti-adhesion (anti- ICAM-1 and anti-LFA-1) therapy in a rat pancreas transplantation model. Transplant Proc 1996; 28 (3): 1808–1811.PubMedGoogle Scholar
  42. 42.
    Guymer RH, Mandel TE. Immunosuppression using a monoclonal antibody to ICAM-1 in murine allotransplantation. Transplant Proc 1992; 24: 218–219.PubMedGoogle Scholar
  43. 43.
    Bulava KM, Kulik VP. [Use of 2,4-dinitrophenol for immunosuppressive action on the recipient in implantation of fetal organs in mice]. Biull Eksp Biol Med 1992; 113: 355–358.PubMedGoogle Scholar
  44. 44.
    Hayashi H, Toki J, Zhexiong L, et al. Long-term (1 year) analyses of chimerism and tolerance in mixed allogeneic chimeric mice using normal mouse combinations. Stem Cells 2000; 18: 273–280.PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki K, Kazui T, Kawabe A, et al. Origin, occurrence, and function of microchimeric cells: V. Quantitative aspects of mi-crochimerism following pancreaticoduodenal transplantation model in rats. Transplant Proc 1998; 30: 3849.PubMedCrossRefGoogle Scholar
  46. 46.
    Bektas H, Jorns A, Klempnauer J. Differential effect of donor-specific blood transfusions after kidney, heart, pancreas, and skin transplantation in major histocompatibility complex-in-compatible rats. Transfusion 1997; 37: 226–230.PubMedCrossRefGoogle Scholar
  47. 47.
    Leibel BS, Martin JM, Chamberlain JW, Zingg W. Pretreat-ment with increasing doses of donor pancreas or whole blood induces tolerance to allogeneic pancreatic transplantation. Transplant Proc 1994; 26: 3709–3714.PubMedGoogle Scholar
  48. 48.
    Schulak JA, Mulligan DC, Robinson A. Intrathymic spleen cell inoculation and ALS fails to induce tolerance to rat pancreas allografts. Transplant Proc 1997; 29 (1/2): 1070–1071.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhan Y, Martin RM, Sutherland RM, et al. Local production of anti-CD4 antibody by transgenic allogeneic grafts affords partial protection. Transplantation 2000; 70 (6): 947–954.PubMedCrossRefGoogle Scholar
  50. 50.
    Mueller R, Davies JD, Krahl T, Sarvetnick N. IL-4 expression by grafts from transgenic mice fails to prevent allograft rejection. J Immunol 1997; 159: 1599–1603.PubMedGoogle Scholar
  51. 51.
    Davies JD, Mueller R, Minson S, et al. Interleukin-4 secretion by the allograft fails to affect the allograft-specific interleukin- 4 response in vitro. Transplantation 1999; 67 (12): 1583–1589.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee MS, Sawyer S, Arnush M, et al. Transforming growth fac-tor-beta fails to inhibit allograft rejection or virus-induced autoimmune diabetes in transgenic mice. Transplantation 1996; 61: 1112–1115.PubMedGoogle Scholar
  53. 53.
    Liu C, Deng S, Yang Z, et al. Local production of CTLA4-Ig by adenoviral-mediated gene transfer to the pancreas induces permanent allograft survival and donor-specific tolerance. Transplant Proc 1999; 31 (l-2): 625–626.PubMedCrossRefGoogle Scholar
  54. 54.
    Davies JD, O’Connor E, Hall D, et al. CD4+ CD45RB low-density cells from untreated mice prevent acute allograft rejection. J Immunol 1999; 163: 5353–5357.PubMedGoogle Scholar
  55. 55.
    Nakai I, Oka T, Field JM, et al. Neonatal tolerance induction in diabetes-prone BB rats as a model for donor-specific pancreas transplantation during adulthood. Transplant Proc 1992; 24: 2902.Google Scholar
  56. 56.
    Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes: Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 1993; 177: 627.PubMedCrossRefGoogle Scholar
  57. 57.
    Seddon B, Mason D. Regulatory T cells in the control of autoimmunity: The essential role of transforming growth factor-beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+ CD45RC- cells and CD4+CD8- thymocytes. J Exp Med 1999; 189: 279.PubMedCrossRefGoogle Scholar
  58. 58.
    Guymer RH, Mandel TE. A comparison of corneal, pancreas, and skin grafts in mice. A study of the determinants of tissue immunogenicity. Transplantation 1994; 57: 1251–1262.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto S, Ito T, Nakata S, et al. The rejection mechanism of rat pancreaticoduodenal allografts with a class I MHC disparity. Transplantation 1994; 57: 1217–1222.PubMedCrossRefGoogle Scholar
  60. 60.
    Maeda A, Ito T, Ohkawa A, et al. Difference in immunologic responses between pancreatic and islet transplantation in “low responder” rat combinations with class I MHC disparity. Transplant Proc 1998; 30: 550–551.PubMedCrossRefGoogle Scholar
  61. 61.
    Oberhuber G, Schmid T, Thaler W, et al. The pattern of rejection after combined stomach, small bowel, and pancreas transplantation in the rat. Transplant Int 1993; 6: 296–298.CrossRefGoogle Scholar
  62. 62.
    Vogt P, Hiller WF, Steiniger B, Klempnauer J. Differential response of kidney and pancreas rejection to cyclosporine immunosuppression. Transplantation 1992; 53: 1269–1272.PubMedCrossRefGoogle Scholar
  63. 63.
    Kovarik J, Koulmanda M, Mandel TE. Expression of both Thl and Th2 cytokines correlates with the histological rejection of MHC-matched and MHC-mismatched foetal pancreas allografts in mice. Immunol Cell Biol 1997; 75: 303–309.PubMedCrossRefGoogle Scholar
  64. 64.
    Klempnauer J, Bektas H, Hiller WF, Steiniger B. Spontaneous tolerance induced by MHC class I incompatible kidney grafts for subsequent pancreas transplants. Transplant Proc 1993; 25: 2856.Google Scholar
  65. 65.
    Klempnauer J, Jorns A, Frericks BB, Bektas H. Changes of antigenicity and loss of immunogenicity in long-standing class I MHC disparate pancreas allografts. Transplant Proc 1997; 29 (1/2): 1151.PubMedCrossRefGoogle Scholar
  66. 66.
    Qiao H, Zhu Y, Jiang H. [The mutual benefit role of pancreas and liver in combined transplantation]. Chung-Hua Wai Ko Tsa Chih [Chin J Surg] 1997; 35: 749–752.Google Scholar
  67. 67.
    Li L, Sun J, Wang C, et al. Graft histology and lymphocyte apoptosis in pancreas allografts combined with liver allografts. Transplant Proc 1998; 30: 2956–2957.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang C, Sun J, Li L, et al. Conversion of pancreas allograft rejection to acceptance by liver transplantation. Transplantation 1998; 65: 188–192.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang C, Sun J, Wang L, et al. Combined liver and pancreas transplantation induces pancreas allograft tolerance. Transplant Proc 1997; 29 (l/2): 1145–1146.PubMedCrossRefGoogle Scholar
  70. 70.
    Spadella CT, Schellini SA, Bacchi CE. Pancreas transplantation versus islet transplantation versus insulin therapy in the prevention of nephropathy in alloxan-induced diabetic rats. Transplant Proc 1998; 30: 327–329.PubMedCrossRefGoogle Scholar
  71. 71.
    Spadella CT, Mercadante MC, Schellini SA, et al. Effect of pancreas transplantation on the prevention of nephropathy in alloxan-induced diabetic rats. Braz J Med Biol Res 1996; 29: 1019–1024.PubMedGoogle Scholar
  72. 72.
    Orloff LA, Orloff MS, Orloff SL, Orloff MJ. Lifelong prevention of mesangial enlargement by whole pancreas transplantation in rats with diabetes mellitus. Arch Surg 1999; 134: 889–897.PubMedCrossRefGoogle Scholar
  73. 73.
    Otsu I, Nozawa M, Tsuchida H, Hirose K. The point of no return in rat diabetic nephropathy: Effects of pancreatic transplantation. Transplant Proc 1992; 24: 857–858.PubMedGoogle Scholar
  74. 74.
    Pieper GM, Adams MB, Roza AM. Pancreatic transplantation reverses endothelial dysfunction in experimental diabetes mellitus. Surgery 1998; 123: 89–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Hayashi T, Nozawa M, Sohmiya K, et al. Efficacy of pancreatic transplantation on cardiovascular alterations in diabetic rats: An ultrastructural and immunohistochemical study. Transplant Proc 1998; 30: 335–338.PubMedCrossRefGoogle Scholar
  76. 76.
    Abe H, Bandai A, Makuuchi M, et al. Hyperinsulinaemia accelerates accumulation of cholesterol ester in aorta of rats with transplanted pancreas. Diabetologia 1996; 39: 1276–1283.PubMedCrossRefGoogle Scholar
  77. 77.
    Ishida H, Seino Y, Takeshita N, et al. Effect of pancreas transplantation on decreased levels of circulating bone gamma-car-boxyglutamic acid-containing protein and osteopenia in rats with streptozocin-induced diabetes. Acta Endocrinol 1992; 127: 81–85.PubMedGoogle Scholar
  78. 78.
    Cesnjevar R, Schwüle PO, Kissler H, et al. Impairment of bone and mineral metabolism after pancreatic transplantation: Observations in syngeneic rats. Eur J Surg 1997; 163: 851–859.PubMedGoogle Scholar
  79. 79.
    Kissler HJ, Hofmann G, Gepp H, et al. High insulin and low IGF-I plasma levels following pancreas transplantation in rats. Implications for bone and mineral metabolism. Scand J Clin Lab Invest 2000; 60: 175–187.PubMedCrossRefGoogle Scholar
  80. 80.
    Pieper GM, Meier DA, Hager SR. Endothelial dysfunction in a model of hyperglycemia and hyperinsulinemia. Am J Physiol 1995; 269: H845 - H850.PubMedGoogle Scholar
  81. 81.
    Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-de-pendent vasodilation in experimental diabetes. J Clin Invest 1991; 87: 432–438.PubMedCrossRefGoogle Scholar
  82. 82.
    Pieper GM, Jordan M, Adams MB, Roza AM. Syngeneic pancreatic islet transplantation reverses endothelial dysfunction in experimental diabetes. Diabetes 1995; 44: 1106–1113.PubMedCrossRefGoogle Scholar
  83. 83.
    Group TDCaCTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.Google Scholar
  84. 84.
    Kissler HJ, Gepp H, Schmiedl A, Schwüle PO. Preservation of the incretin effect after orthotopic pancreas transplantation in inbred rats. Metab Clin Exp 1999; 48: 645–650.PubMedCrossRefGoogle Scholar
  85. 85.
    Kissler HJ, Gepp H, Schwille PO. Metabolic consequences of orthotopic pancreaticoduodenal transplantation with preservation of near normal physiology. Transplantation 2000; 70: 747–754.PubMedCrossRefGoogle Scholar
  86. 86.
    Elian N, Carnot F, Bailbe D, et al. Total pancreatico-duodenal transplantation with portal venous drainage: Metabolic assessments in diabetic rats. Eur Surg Res 2000; 32: 120–124.PubMedCrossRefGoogle Scholar
  87. 87.
    Abe H, Yamada N, Ishibashi S, Makuuchi M. Chronic inhibitory effect of insulin on plasma lipid concentrations in rats with transplanted pancreas. Transplantation 2000; 69: 2038–2042.PubMedCrossRefGoogle Scholar
  88. 88.
    Nakai I, Uchiyama K, Mitsuo M, et al. Elimination of hyperinsulinemia after pancreas transplantation in rats. Transplant Proc 1999; 31: 2010–2011.PubMedCrossRefGoogle Scholar
  89. 89.
    Uchiyama K, Nakai I, Mitsuo M, et al. Surgical and chemical approaches to regulate hyperinsulinemia after pancreas transplantation in rats. Transplant Proc 1998; 30: 631–632.PubMedCrossRefGoogle Scholar
  90. 90.
    Uchiyama K, Nakai I, Shimizu Y, et al. Effect of troglitazone on blood insulin levels after pancreas transplantation with systemic venous drainage in rats. Transplantation 1997; 64: 1476–1478.PubMedCrossRefGoogle Scholar
  91. 91.
    Kissler HJ, Gepp H, Tannapfel A, Schwille PO. Effect of venous drainage site on insulin action after pancreas transplantation in the rat—is there insulin resistance and a risk for atherosclerosis? Metab Clin Exp 2000; 49: 458–466.PubMedCrossRefGoogle Scholar
  92. 92.
    Mitsuo M, Nakai I, Oda T, et al. Importance of venous drainage site of pancreas graft on carbohydrate and lipid metabolisms in streptozocin-induced diabetic rats. Transplant Proc 1994; 26: 485–486.PubMedGoogle Scholar
  93. 93.
    Philosophe B, Farney AC, Schweitzer EJ, et al. The superiority of portal venous drainage over systemic venous drainage in pancreas transplantation. Ann Surg. In press.Google Scholar
  94. 94.
    Cattral MS, Bigam DL, Hemming AW, et al. Portal venous and enteric drainage versus systemic and bladder exocrine drainage of pancreas grafts: Clinical outcome of 40 consecutive transplant recipients. Ann Surg 2000; 232: 688–695.PubMedCrossRefGoogle Scholar
  95. 95.
    Bartlett ST, Gillison SL, Dirden B, Curry DL. Long-term pancreatic and pancreaticoduodenal isografts maintain normal insulin secretory function in Lewis rats. Transplant Proc 1992; 24: 884–885.PubMedGoogle Scholar
  96. 96.
    Spadella CT, Breim LC, Mercadante MC, et al. Metabolic effect of pancreaticoduodenal transplantation in diabetic rats. Microsurgery 1992; 13: 132–137.PubMedCrossRefGoogle Scholar
  97. 97.
    Kissler HJ, Gepp H, Schwille PO. Orthotopic pancreas transplantation with portal venous drainage in rats. Surgical technique and metabolic effects(*). Res Exp Med 1999; 199: 73–85.CrossRefGoogle Scholar
  98. 98.
    Nakai I, Deshmukh AR, Liener IE, Sutherland DE. Effect of soybean flour on exocrine function in rat pancreas transplant with bladder drainage. Pancreas 1992; 7: 334–338.PubMedCrossRefGoogle Scholar
  99. 99.
    Vollmar B, Janata J, Yamauchi J, et al. Exocrine, but not endocrine, tissue is susceptible to microvascular ischemia/reper-fusion injury following pancreas transplantation in the rat. Transplant Int 1999; 12: 50–55.Google Scholar
  100. 100.
    Mayer H, Schmidt J, Thies J, et al. Characterization and reduction of ischemia/reperfusion injury after experimental pancreas transplantation. J Gastrointest Surg 1999; 3: 162–166.PubMedCrossRefGoogle Scholar
  101. 101.
    Vollmar B, Janata J, Yamauchi JI, Menger MD. Attenuation of microvascular reperfusion injury in rat pancreas transplantation by L-arginine. Transplantation 1999; 67: 950–955.PubMedCrossRefGoogle Scholar
  102. 102.
    Svensson AM, Sandler S, Jansson L. The blood flow in pancreatico-duodenal grafts in rats: Inhibition of nitric oxide synthase preferentially decreases islet blood flow. Eur J Pharmacol 1995; 275: 99–103.PubMedCrossRefGoogle Scholar
  103. 103.
    Hotter G, Pi F, Sanz C, et al. Endothelin mediated nitric oxide effects in ischemia—reperfusion associated with pancreas transplantation. Digest Dis Sei 1998; 43: 2627–2633.CrossRefGoogle Scholar
  104. 104.
    Peralta C, Hotter G, Closa D, et al. Nitric oxide enhances endothelin production in pancreas transplantation. Pancreas 1997; 14: 369–372.PubMedCrossRefGoogle Scholar
  105. 105.
    Hotter G, Closa D, Pi F, et al. Nitric oxide and arachidonate metabolism in ischemia-reperfusion associated with pancreas transplantation. Transplantation 1995; 59: 417–421.PubMedGoogle Scholar
  106. 106.
    Pi F, Hotter G, Closa D, et al. Differential effect of nitric oxide inhibition as a function of preservation period in pancreas transplantation. Digest Dis Sei 1997; 42: 962–971.CrossRefGoogle Scholar
  107. 107.
    Hotter G, Closa D, Pi F, et al. Nitric oxide enhances 12-HETE versus LTB4 generation in pancreatic transplantation. Inflammation 1996; 20: 23–31.PubMedCrossRefGoogle Scholar
  108. 108.
    Hotter G, Closa D, Pi F, et al. Arachidonate metabolism in ischemia-reperfusion associated with pancreas transplantation. J Lipid Médiat Cell Signal 1994; 9: 135–143.PubMedGoogle Scholar
  109. 109.
    Hotter G, Leon OS, Rosello-Catafau J, et al. Tissular prostanoid release, phospholipase A2 activity, and lipid peroxidation in pancreas transplantation. Transplantation 1991; 51: 987–990.PubMedCrossRefGoogle Scholar
  110. 110.
    Oda T, Nakai I, Mituo M, et al. Role of oxygen radicals and synergistic effect of superoxide dismutase and catalase on ischemia-reperfusion injury of the rat pancreas. Transplant Proc 1992; 24: 797–798.PubMedGoogle Scholar
  111. 111.
    Ikeda M, Matsura T, Sumimoto K, et al. alpha-Tocopherol pre-treatment protects the endocrine function of grafts against ischemic damage during heterotopic pancreatic transplantation. Life Sei 1996; 59: 781–788.CrossRefGoogle Scholar
  112. 112.
    Ikeda M, Sumimoto K, Urushihara T, et al. Prevention of ischemic damage in rat pancreatic transplantation by pretreat-ment with alpha-tocopherol. Transplant Proc 1994; 26: 561–562.PubMedGoogle Scholar
  113. 113.
    Wang FS, Yamaguchi Y, Akizuki E, et al. Neutrophil elastase inhibitor (ONO-5046) decreases cytokine-induced neutrophil chemoattractant after reperfusion of pancreaticoduodenal transplantation in rats. Transplantation 1996; 61: 1103–1107.PubMedCrossRefGoogle Scholar
  114. 114.
    Bassi C, Benetti L, Girelli R, et al. Early graft injuries after pancreatic transplantation in syngeneic rats. Cytoprotective effects of gabexate-mesilate. Int J Pancreatol 1991; 8: 345–353.PubMedGoogle Scholar
  115. 115.
    Urushihara T, Sumimoto K, Sumimoto R, et al. Prevention of reperfusion injury after rat pancreas preservation using rinse solution containing nafamostat mesilate. Transplant Proc 1996; 28 (3): 1874–1875.PubMedGoogle Scholar
  116. 116.
    Urushihara T, Sumimoto K, Sumimoto R, et al. Nafamostat mesilate rinse solution improves graft survival after rat pancreas and heart preservation. Transplant Proc 1995; 27 (1): 786–787.PubMedGoogle Scholar
  117. 117.
    Urushihara T, Sumimoto K, Sumimoto R, et al. Rinse solution containing a protease inhibitor and Na-lactobionate increases graft survival after rat pancreas preservation. Transplant Proc 1994; 26 (2): 559–560.PubMedGoogle Scholar
  118. 118.
    Sumimoto R, Dohi K, Urushihara T, et al. An examination of the effects of solutions containing histidine and lactobionate for heart, pancreas, and liver preservation in the rat. Transplantation 1992; 53 (6): 1206–1210.PubMedCrossRefGoogle Scholar
  119. 119.
    Urushihara T, Sumimoto R, Sumimoto K, et al. A comparison of some simplified lactobionate preservation solutions with standard UW solution and Eurocollins solution for pancreas preservation. Transplantation 1992; 53 (4): 750–754.PubMedCrossRefGoogle Scholar
  120. 120.
    Urushihara T, Sumimoto K, Sumimoto R, et al. A comparison of rat pancreas preservation with CMH, Ep4, UW, and HL solutions. Transplant Proc 1998; 30 (7): 3425–3426.PubMedCrossRefGoogle Scholar
  121. 121.
    Urushihara T, Sumimoto K, Ikeda M, et al. A comparison study of rat pancreas preservation using perfluorochemical and fluo-rocarbon-emulsion as preservation medium. Biomat Art Cells Immob Biotech 1992; 20 (2/4): 933–937.Google Scholar
  122. 122.
    Urushihara T, Sumimoto K, Ikeda M, et al. A comparative study of two-layer cold storage with perfluorochemical alone and University of Wisconsin solution for rat pancreas preservation. Transplantation 1994; 57 (11): 1684–1686.Google Scholar
  123. 123.
    Bartlett ST, Chin T, Dirden B, et al. Inclusion of peripancre-atic lymph node cells prevents recurrent autoimmune destruction of islet transplants: Evidence of donor chimerism. Surgery 1995;118(2):392–397; discussion 397–398.Google Scholar
  124. 124.
    Purcell LJ, Mottram PL, Mandel TE. Immunosuppressive antibody treatment prolongs graft survival in two murine models of segmental pancreas transplantation. Immunol Cell Biol 1993; 71 (4): 349–352.PubMedCrossRefGoogle Scholar
  125. 125.
    Mottram PL, Murray-Segal LJ, Han W, et al. Long-term survival of segmental pancreas isografts in NOD/Lt mice treated with anti-CD4 and anti-CD8 monoclonal antibodies [published erratum appears in Diabetes 1998 Dec;47(12):1978]. Diabetes 1998; 47 (9): 1399–1405.PubMedCrossRefGoogle Scholar
  126. 126.
    Purcell LJ, Mottram PL. Prevention of both rejection and recurrence of autoimmune disease in the NOD/Lt mouse following segmental pancreas transplantation. Transplant Proc 1995; 27 (3): 2166–2167.PubMedGoogle Scholar
  127. 127.
    Koulmanda M, McKenzie I, Sandrin M, Mandel T. Fetal pig xenografts in NOD/Lt mice: Lack of expression of Gal(alpha l-3)Gal on endocrine cells and the effect of peritransplant anti- CD4 monoclonal antibody and graft immunomodification on graft survival. Transplant Proc 1995; 27 (6): 3570.PubMedGoogle Scholar
  128. 128.
    Koulmanda M, Mandel TE. Rejection and histopathology of renal subcapsular fetal pig pancreas xenografts in normal and anti-CD4 monoclonal antibody-treated nonobese diabetic mice. Transplant Proc 1993; 25 (5): 2928–2929.PubMedGoogle Scholar
  129. 129.
    Mandel TE, Koulmanda M. Effect of anti-CD4 and anti-CD8 monoclonal antibody treatment on fetal pig pancreas xenograft survival in nonobese diabetic/Lt female mice. Transplant Proc 1992; 24 (1): 216–217.PubMedGoogle Scholar
  130. 130.
    Akita K, Ogawa M, Mandel TE. Effect of FK506 and anti-CD4 therapy on fetal pig pancreas xenografts and host lymphoid cells in nod/Lt, CBA, and BALB/c mice. Cell Transplant 1994; 3 (1): 61–73.PubMedGoogle Scholar
  131. 131.
    Koulmanda M, Mandel TE. Effect of anti-CD4 and anti-ICAM MAb on survival of fetal pig pancreas grafts in NOD mice. Transplant Proc 1994; 26 (6): 3466.PubMedGoogle Scholar
  132. 132.
    Mandel TE, Koulmanda M. Anti-CD3 monoclonal antibody prolongs survival of fetal pig pancreas grafts in NOD mice. Transplant Proc 1992; 24 (5): 2289–2290.PubMedGoogle Scholar
  133. 133.
    Bacelj A, Mandel TE, Charlton B. Anti-V beta 8 antibody therapy prevents disease recurrence in fetal pancreas isografts in spontaneously diabetic nonobese diabetic mice. Transplant Proc 1992;24(1) :220–221.Google Scholar
  134. 134.
    Kai N, Motojima K, Tsunoda T, Kanematsu T. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. Transplantation 1993; 55 (4): 936–940.PubMedCrossRefGoogle Scholar
  135. 135.
    Kai N, Motojima K, Shiogama T, et al. A study on the timing of immunologic priming in autoimmune insulitis in NOD mice. Transplant Proc 1992; 24 (3): 1040–1041.PubMedGoogle Scholar
  136. 136.
    Uchikoshi F, Ito T, Kamiike W, et al. Anti-ICAM-1/LFA-l monoclonal antibody therapy prevents graft rejection and IDDM recurrence in BB rat pancreas transplantation. Transplant Proc 1995; 27 (2): 1527–1528.PubMedGoogle Scholar
  137. 137.
    Bradley BJ, Haskins K, G. LRF, Lafferty KJ. CD8 T cells are not required for islet destruction induced by a CD4+ islet-spe-cific T-cell clone. Diabetes 1992; 41 (12): 1603–1608.PubMedCrossRefGoogle Scholar
  138. 138.
    Nagata M, Yoon JW. Studies on autoimmunity for T-cell-me-diated beta-cell destruction. Distinct difference in beta-cell destruction between CD4+ and CD8+ T-cell clones derived from lymphocytes infiltrating the islets of NOD mice. Diabetes 1992; 41 (8): 998–1008.PubMedCrossRefGoogle Scholar
  139. 139.
    Wang Y, Pontesilli O, Gill RG, et al. The role of CD4+ and CD8+ T cells in the destruction of islet grafts by spontaneously diabetic mice. PNAS 1991; 88 (2): 527–531.PubMedCrossRefGoogle Scholar
  140. 140.
    Georgiou HM, Mandel TE. Induction of insulitis in athymic (nude) mice. The effect of NOD thymus and pancreas transplantation. Diabetes 1995; 44 (l): 49–59.PubMedCrossRefGoogle Scholar
  141. 141.
    Uchikoshi F, Ito T, Kamiike W, et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. Transplantation 1996; 61 (11): 1629–1636.PubMedCrossRefGoogle Scholar
  142. 142.
    Uchikoshi F, Ito T, Kamiike W, et al. Pancreas transplantation, but not islet transplantation, protects recurrence of IDDM in diabetic BB rats. Transplant Proc 1997; 29 (l/2): 753–755.PubMedCrossRefGoogle Scholar
  143. 143.
    Uchikoshi F, Ito T, Kamiike W, et al. Appearance of im-munoregulatory RT6+ T cells after successful pancreas transplantation in diabetic BB rats. Transplant Proc 1995; 27 (1): 599–601.PubMedGoogle Scholar
  144. 144.
    Tori M, Ito T, Yumiba T, et al. Proliferation of donor-derived NKR-P1+TCR alpha beta + (NKT) cells in the nonrecurrent spontaneous diabetic BB rats transplanted with pancreaticoduodenal grafts of Wistar-Furth donors. Transplant Proc 1999; 31 (7): 2741–2742.PubMedCrossRefGoogle Scholar
  145. 145.
    Tori M, Ito T, Yumiba T, et al. Significant role of intragraft lymphoid tissues in preventing insulin-dependent diabetes mellitus recurrence in whole pancreaticoduodenal transplantation. Microsurgery 1999; 19 (7): 338–343.PubMedCrossRefGoogle Scholar
  146. 146.
    Tori M, Ito T, Kitagawa-Sakakida S, et al. Importance of donor-derived lymphocytes in the protection of pancreaticoduodenal or islet grafts from recurrent autoimmunity: A role for RT6+NKR-P1+ T cells. Transplantation 2000; 70 (l): 32–38.PubMedCrossRefGoogle Scholar
  147. 147.
    Uchikoshi F, Yang ZD, Rostami S, et al. Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA4Ig gene transfer to the pancreatic graft in BB rat. Diabetes 1999; 48 (3): 652–657.PubMedCrossRefGoogle Scholar
  148. 148.
    Fox A, Koulmanda M, Mandel TE, et al. Evidence that macrophages are required for T-cell infiltration and rejection of fetal pig pancreas xenografts in nonobese diabetic mice. Transplantation 1998; 66 (11): 1407–1416.PubMedCrossRefGoogle Scholar
  149. 149.
    Chong AS, Ma LL, Yin D, et al. Tolerance of T-independent xeno-antibody responses in the hamster-to-rat xenotransplantation model is species-restricted but not tissue-specific. Xenotransplantation 2000; 7 (l): 48–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Sakimoto H, Fukuda Y, Sumimoto K, et al. Prolonged survival of hamster-to-rat pancreas xenografts by FK 506 and splenectomy. Transplant Proc 1995; 27 (l): 296–297.PubMedGoogle Scholar
  151. 151.
    Sakimoto H, Fukuda Y, Sumimoto K, et al. Administration of tacrolimus (FK506) in hamster-to-rat pancreas xenotransplantation. Transplant Proc 1996; 28 (3): 1433–1434.PubMedGoogle Scholar
  152. 152.
    Ohtsuka S, Yasutomi M, Hayashi S, et al. Effect of splenectomy on hamster-to-rat pancreas xenotransplantation. Transplant Proc 1994; 26 (3): 1180–1181.PubMedGoogle Scholar
  153. 153.
    Ohtsuka S, Hayashi S, Sato E, et al. Hamster-to-rat xenotransplantation of whole pancreas by FK 506 combined with splenectomy. Transplant Proc 1994; 26 (2): 781.PubMedGoogle Scholar
  154. 154.
    Zhan Y, Corbett AJ, Brady JL, et al. Delayed rejection of fetal pig pancreas in CD4 cell deficient mice was correlated with residual helper activity. Xenotransplantation 2000; 7 (4): 267–274.PubMedCrossRefGoogle Scholar
  155. 155.
    Tuch BE, Casamento FM. Outcome of xenografted fetal porcine pancreatic tissue is superior in inbred seid (C.B-17/Icr-scid/ seid) compared to outbred nude (CD-l-nu/nu) mice. Cell Transplant 1999; 8 (3): 259–264.PubMedGoogle Scholar
  156. 156.
    Tuch BE, Madrid JC. Development of fetal sheep pancreas after transplantation into athymic mice. Cell Transplant 1996; 5 (4): 483–489.PubMedCrossRefGoogle Scholar
  157. 157.
    Yderstraede KB, Starklint H, Thye-Ronn P. Morphologic evaluation of xenotransplanted neonatal islets of Langerhans and fetal pancreata from rats to nude mice. Transplant Proc 1994; 26 (3): 1123–1124.PubMedGoogle Scholar
  158. 158.
    Tuch BE. Reversal of diabetes by human fetal pancreas. Optimization of requirements in the hyperglycemic nude mouse. Transplantation 1991 ;51(3):557–562.Google Scholar
  159. 159.
    Tuch BE, Monk RS, Beretov J. Reversal of diabetes in athymic rats by transplantation of human fetal pancreas. Transplantation 1991; 52 (1): 172–175.PubMedCrossRefGoogle Scholar
  160. 160.
    Tuch BE. Xenografts of human fetal pancreas regulate blood glucose to human levels. Transplant Proc 1992; 24 (3): 977–978.PubMedGoogle Scholar
  161. 161.
    Beattie GM, Hayek A. Outcome of human fetal pancreatic transplants according to implantation site. Transplant Proc 1994; 26 (6): 3299.PubMedGoogle Scholar
  162. 162.
    Adeghate E. Host-graft circulation and vascular morphology in pancreatic tissue transplants in rats. Anat Ree 1998; 251 (4): 448–459.CrossRefGoogle Scholar
  163. 163.
    Ricordi C, Zeng Y, Tzakis A, et al. Evidence that canine pancreatic islets promote the survival of human hepatocytes in nude mice. Transplantation 1991; 1991 (52): 749.Google Scholar
  164. 164.
    Ricordi C, Lacy PE, Callery MP, et al. Trophic factors from pancreatic islets in combined hepatocyte-islet allografts enhance hepatocellular survival. Surgery 1989, 105: 218.PubMedGoogle Scholar
  165. 165.
    Wang XG, Tafra L, Berezniak R, et al. Effects of cotransplanted fetal liver on fetal pancreas isografts. Transplantation 1992; 53 (2): 272–276.PubMedCrossRefGoogle Scholar
  166. 166.
    Adams GA, Wang X, Lee LK, et al. Blockade of the insulinlike growth factor-I receptor affects intramuscular fetal pancreas/fetal liver isografts in diabetic rats. Transplant Proc 1994; 26 (6): 3331–3332.PubMedGoogle Scholar
  167. 167.
    Adams GA, Wang X, Lee LK, et al. Insulin-like growth fac-tor-I promotes successful fetal pancreas transplantation in the intramuscular site. Surgery 1994; 116(4):751–755; discussion 756–757.Google Scholar
  168. 168.
    Adams GA, Squiers EC, Maestri M, et al. Regimens of IGF-I treatment in fetal pancreas transplantation. J Surg Res 1997; 68 (l): 73–78.PubMedCrossRefGoogle Scholar
  169. 169.
    Desai DM, Adams GA, Wang X, et al. The influence of combined trophic factors on the success of fetal pancreas grafts. Transplantation 1999;68(4):491–496.Google Scholar
  170. 170.
    Tuch BE, Beretov J. The lack of interaction between transplanted human fetal pancreas and liver. Transplantation 1994; 57 (10): 1427–1432.PubMedGoogle Scholar
  171. 171.
    Gittes GK, Galante PE, Hanahan D, et al. Lineage-specific morphogenesis in the developing pancreas: Role of mesenchymal factors. Development 1996; 122 (2): 43947.Google Scholar
  172. 172.
    Dudek RW, Lawrence IE, Hill RS, Johnson RC. Induction of islet cytodifferentiation by fetal mesenchyme in adult pancreatic ductal epithelium. Diabetes 1991 ;40(8): 1041–1048.Google Scholar
  173. 173.
    Pirenne J, D’Silva M, Nakhleh RE, et al. Multiorgan transplantation in the rat: Development of a new microsurgical model. Microsurgery 1991; 12 (6): 378–384.PubMedCrossRefGoogle Scholar
  174. 174.
    Knoop M, Steffen R, Neuhaus P. A technique for hepatopan-creaticoduodenal cluster transplantation in the rat. Microsurgery 1991 ; 12(6) :385–388.Google Scholar
  175. 175.
    Nakai I, Oka T, Kaufman DB, et al. En bloc kidney and whole pancreaticoduodenal transplantation with bladder drainage in the rat: Microsurgical technique and outcome. Microsurgery 1993; 14 (3): 215–220.PubMedCrossRefGoogle Scholar
  176. 176.
    Tori M, Ito T, Matsuda H, et al. Model of mouse pancreaticoduodenal transplantation. Microsurgery 1999; 19 (2): 61–65.PubMedCrossRefGoogle Scholar
  177. 177.
    Verma AK. Experimental pancreas transplantation using a supercharged graft to ensure portal venous drainage with urinary exocrine diversion: A novel surgical approach. Transplant Proc 1998;30(2) :444–445.Google Scholar
  178. 178.
    Mitsuo M, Nakai I, Oda T, Oka T. [Total pancreaticoduodenal transplantation with portal venous drainage in the rat: Retroparatopic pancreaticoduodenal transplantation: preliminary report]. Nippon Geka Gakkai Zasshi. J Jpn Surg Soc 1991; 92 (6): 762.Google Scholar
  179. 179.
    Kobayashi E, Kamada N, Toyama N, et al. Successful methods of pancreas transplantation in the rat using a cuff technique. Austr N Zeal J Surg 1994;64(7):491–493.Google Scholar
  180. 180.
    Ohtsuka S, Yokoyama I, Hayashi S, et al. Experimental rat pancreas transplant: Surgical technique and immunological considerations. Surg Today 1994; 24 (3): 247–253.PubMedCrossRefGoogle Scholar
  181. 1.
    Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967; 61: 827.PubMedGoogle Scholar
  182. 2.
    Sachs DH, Leight G, Cone J, et al. Transplantation in miniature swine: I. Fixation of the major histocompatibility complex. Transplantation 1976; 22: 559.PubMedCrossRefGoogle Scholar
  183. 3.
    Barr D, Perkins JD, Miller AR, Marsh CL, Carpenter HA. Canine pancreaticoduodenal allotransplantation with cystoduo-denostomy: An animal model with clinical application. J Invest Surg 1989; 2: 145.PubMedCrossRefGoogle Scholar
  184. 4.
    Papachristou DN, Fortner JG. A simple method of pancreatic transplantation in the dog. Am J Surg 1980; 139: 344.PubMedCrossRefGoogle Scholar
  185. 5.
    Debas HT, Passaro E Jr. Preparation of the orthotopic auto-transplanted pancreas for long-term exocrine studies. Am J Surg 1983; 146: 339.PubMedCrossRefGoogle Scholar
  186. 6.
    MacAulay MA, Fraser RB, Morais A, Macdonald AS. Acinar structure and function in canine pancreatic autografts with duct drainage into the urinary bladder. Transplantation 1985; 39: 490.PubMedCrossRefGoogle Scholar
  187. 7.
    Munda R, Berlatzky Y, Jonung M, et al. Studies on segmental pancreatic autotransplants in dogs. Arch Surg 1983; 118: 1310.PubMedCrossRefGoogle Scholar
  188. 8.
    Florack G, Sutherland DE, Cavallini M, Najarian JS. Technical aspects of segmental pancreatic autotransplantation in dogs. Am J Surg 1983; 146: 565.PubMedCrossRefGoogle Scholar
  189. 9.
    Diliz-Perez HS, Hong HQ, de Santibanes E, et al. Total pancreaticoduodenal homotransplantation in dogs immunosuppressed with cyclosporine and steroids. Am J Surg 1984; 147: 677.PubMedCrossRefGoogle Scholar
  190. 10.
    Kyriakides GK, Rabinovitch A, Mintz D, Olson L, Rapaport FT, Miller J. Long-term study of vascularized free-draining intraperitoneal pancreatic segmental allografts in beagle dogs. J Clin Invest 1981; 67: 292.PubMedCrossRefGoogle Scholar
  191. 11.
    Cook, K, Sollinger HW, Warner T, Kamps D, Belzer FO. Pan-creaticocystostomy: An alternative method for exocrine drainage of segmental pancreatic allografts. Transplantation 1983; 35: 634–636.PubMedCrossRefGoogle Scholar
  192. 12.
    Ganger KH, Mettler D, Hoflin F, et al. Experimental pancreati-cosplenic composite transplantation in the pig. Operative technique and assessment of graft function. Eur Surg Res 1987; 19: 323.PubMedCrossRefGoogle Scholar
  193. 13.
    Gruessner RW, Tzardis PJ, Schechner R, et al. En bloc simultaneous pancreas and kidney allotransplantation in the pig. J Surg Res 1990; 49: 366.PubMedCrossRefGoogle Scholar
  194. 14.
    Hawthorne WJ, Griffin AD, Lau H, Ekberg H, Allen RD. The effect of venous drainage on glucose homeostasis after experimental pancreas transplantation. Transplantation 1996; 62: 435.PubMedCrossRefGoogle Scholar
  195. 15.
    Shokouh-Amiri MH, Rahimi-Saber S, Andersen HO, Jensen SL. Pancreas autotransplantation in pig with systemic or portal venous drainage. Effect on the endocrine pancreatic function after transplantation. Transplantation 1996; 61: 1004.PubMedCrossRefGoogle Scholar
  196. 16.
    Du Toit DF, Reece-Smith H, McShane P, Denton T, Morris PJ. A successful technique of segmental pancreatic autotransplanta-tion in the dog. Transplantation 1981; 31: 395.PubMedCrossRefGoogle Scholar
  197. 17.
    Calne RY, McMaster P, Rolles K, Duffy TJ. Technical observations in segmental pancreas allografting: Observations on pancreatic blood flow. Transplant Proc 1980; 12 (4, suppl 2): 51.PubMedGoogle Scholar
  198. 18.
    Suzuki Y, Kuroda Y, Tanioka Y, et al. New technique of orthotopic segmental pancreas transplantation with portal venous drainage established by interposing the splenic vessels. Transplant Proc 1996; 28: 1804.PubMedGoogle Scholar
  199. 19.
    Suzuki Y, Kuroda Y, Tanioka Y, et al. Beneficial effect of splenic vessel interposition on thrombosis prevention in canine orthotopic segmental pancreas transplantation. Transplant Proc 1998; 30: 145.PubMedCrossRefGoogle Scholar
  200. 20.
    Chao SH, Chieng PU, Lee PH, Chu SH, Chen KM. Octreotide effects on pancreatic graft pancreatitis in inbred pigs. Transplant Proc 1996; 28: 1799.PubMedGoogle Scholar
  201. 21.
    Kallen R, Jonsson P, Montgomery A, Borgstrom A. Failure of aprotinin to prevent graft pancreatitis in porcine pancreas transplantation. Pancreas 1996; 12: 103.PubMedCrossRefGoogle Scholar
  202. 22.
    Ericzon B-J, Wijnen RMH, Tiebosch A, Kubota K, Kootstra G, Groth CG. The effect of FK506 treatment on pancreaticoduodenal transplantation in the primate. Transplantation 1992; 53: 1184.PubMedCrossRefGoogle Scholar
  203. 23.
    Ericzon B-J, Wijnen RMH, Kubota K, Kootstra G, Groth CG. FK506-induced impairment of glucose metabolism in the primate—studies in pancreatic transplant recipients and in non-transplanted animals. Transplantation 1992, 54: 615.PubMedCrossRefGoogle Scholar
  204. 24.
    Gooszen HG, van Schilfgaarde R, Frölich M, Van der Burg MP. The effects of duct obliteration and of autotransplantation on the endocrine function of canine pancreatic segments. Diabetes 1985; 34: 1008.PubMedCrossRefGoogle Scholar
  205. 25.
    Schang T, Heil J, Dunning M, Najarian JS, Sutherland DE. Contribution of graft duodenum to metabolic disorders in canine recipients of whole pancreaticoduodenal transplants with bladder drainage. Transplant Proc 1989; 21 (1, pt 3): 2804.Google Scholar
  206. 26.
    Drachenberg CB, Papadimitriou JC, Klassen DK, et al. Evaluation of pancreas transplant needle biopsy: Reproducibility and revision of histologic grading system. Transplantation 1997; 63: 1579.PubMedCrossRefGoogle Scholar
  207. 27.
    Gotoh M, Monden M, Motoki Y, et al. Early detection of rejection in the allografted pancreas. Transplant Proc 1984; 16: 781.Google Scholar
  208. 28.
    Prieto M, Sutherland DE, Fernandez-Cruz L, Heil J, Najarian JS. Urinary amylase monitoring for early diagnosis of pancreas allograft rejection in dogs. J Surg Res 1986; 40: 597.PubMedCrossRefGoogle Scholar
  209. 29.
    Prieto M, Sutherland DER, Fernandez-Cruz L, et al. Early diagnosis and treatment of rejection in pancreas transplantation. Transplant Proc 1986; 18: 1805.Google Scholar
  210. 30.
    Prieto M, Sutherland DE, Fernandez-Cruz L, Heil J, Najarian JS. Experimental and clinical experience with urine amylase monitoring for early diagnosis of rejection in pancreas transplantation. Transplantation 1987; 43: 73.PubMedCrossRefGoogle Scholar
  211. 31.
    Prieto M, Sutherland DE, Goetz FC, Rosenberg ME, Najarian JS. Pancreas transplant results according to the technique of duct management: Bladder versus enteric drainage. Surgery 1987; 102: 680.PubMedGoogle Scholar
  212. 32.
    Gruessner RW, Nakhleh R, Tzardis PJ, et al. Correlation between duodenal and kidney rejection: A histologic comparative study in a pig model of pancreaticoduodenal-kidney transplantation. Transplant Proc 1994; 26: 541.PubMedGoogle Scholar
  213. 33.
    Gruessner RW, Nakhleh R, Tzardis P, et al. Rejection in single versus combined pancreas and kidney transplantation in pigs. Transplantation 1993; 56: 1053.PubMedCrossRefGoogle Scholar
  214. 34.
    Suzuki Y, Kuroda Y, Tanioka Y, et al. Peripancreatic fluid cytology: Detection of early rejection versus graft pancreatitis after canine pancreatic transplantation. World J Surg 1997; 21: 880.PubMedCrossRefGoogle Scholar
  215. 35.
    Wahlberg JA, Love R, Landegaard L, Southard JH, Beizer FO. 72-hour preservation of the canine pancreas. Transplantation 1987; 43: 5.PubMedCrossRefGoogle Scholar
  216. 36.
    Kuroda Y, Tanioka Y, Morita A, et al. Protective effect of preservation of canine pancreas by the two-layer (University of Wisconsin solution/perfluorochemical) method against rewarming ischemic injury during implantation. Transplantation 1994; 57: 658.PubMedCrossRefGoogle Scholar
  217. 37.
    Kim Y, Kuroda Y, Tanioka Y, et al. Recovery of pancreatic tissue perfusion and ATP tissue level after reperfusion in canine pancreas grafts preserved by the two-layer method. Pancreas 1997; 14: 285.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Alan C. Farney
  • Mikel Prieto
  • Ari J. Cohen
  • Scott L. Nyberg
  • Mark D. Stegall

There are no affiliations available

Personalised recommendations