Observed Spectra

  • L. E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


In classical systems we have a clear picture of the mechanism by which constants of the motion are destroyed, because constants of the motion constrain phase space trajectories to surfaces of lower dimension (KAM surfaces). When these surfaces are destroyed, trajectories are free to wander in a chaotic manner throughout regions of higher dimension. This whole process is easily seen numerically in Poincare surfaces of section. In quantum systems, we cannot define phase space trajectories because we cannot simultaneously specify both the momentum and position of a particle with arbitrarily high precision due to the uncertainty principle. However, what has proven to be extremely useful is a study of the statistical properties of quantum systems whose classical counterparts undergo a transition from regular (dominated by KAM surfaces) to chaotic behavior. Indeed, Percival [Percival 1973] suggested that this might be so, at least in the semiclassical limit, since when a constant of the motion is destroyed so is the quantum number that one might assign to it.


Spectral Sequence Wigner Distribution Spectral Statistic Spectral Spacing Neighbor Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, M.V. (1981): Ann. Phys. 131 163.ADSCrossRefGoogle Scholar
  2. Berry, M.V. (1986): in Quantum Chaos and Statistical Nuclear Physics (Lecture Notes in Physics, Vol. 263) edited by T.H. Seligman and H. Nishioka (Springer-Verlag, Berlin).Google Scholar
  3. Berry, M.V. and Tabor, M. (1977a): J. Phys. A: Math. Gen. 10 371.ADSCrossRefGoogle Scholar
  4. Berry, M.V. and Tabor, M. (1977b): Proc. Roy. Soc. Lond. A356 375.ADSzbMATHCrossRefGoogle Scholar
  5. Berry, M.V. and Wilkenson, M. (1984): Proc. Roy. Soc. Lond. A392 15.ADSzbMATHCrossRefGoogle Scholar
  6. Bohigas, O., Giannoni, M.J., and Schmidt, C. (1984): Phys. Rev. Lett. 52 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Brody, T.A. (1974): Lett. Nuovo Cimento 7 482.CrossRefGoogle Scholar
  8. Brody, T.A., Flores, J., French J.B., Mello, P.A., Pandey, A., and Wong, S.S.M. (1981): Rev. Mod. Phys. 53 385.MathSciNetADSCrossRefGoogle Scholar
  9. Brookes, B.C. and Dick, W.F.L. (1969): Introduction to Statistical Methods (Heinemann, London).Google Scholar
  10. Camarda, H.S. and Georgopulos, P.D. (1983): Phys. Rev. Lett 50 492.ADSCrossRefGoogle Scholar
  11. Casati, G., Vals-Gris, F., and Guarnieri, I. (1980): Lett. Nuovo Cimento 28 279.MathSciNetCrossRefGoogle Scholar
  12. Casati, G., Chirikov, B.V., and Guarnieri, I. (1985): Phys. Rev. Lett. 54 1350.MathSciNetADSCrossRefGoogle Scholar
  13. Cheng, Z. and Lebowitz, J.L. (1991): “Statistics of Energy Levels in an Integrable Quantum System” (Preprint: Rutgers University)Google Scholar
  14. Feingold, M. and Peres, A. (1986): Phys. Rev. A34 591.MathSciNetADSCrossRefGoogle Scholar
  15. Gaspard, P., Rice, S.A., and Nakamura, K. (1989): Phys. Rev. Lett. 63 930.ADSCrossRefGoogle Scholar
  16. Gibbons, J. and Hermsen, T. (1984): Physica Dl1 337.MathSciNetGoogle Scholar
  17. Goggin, M.F. and Milonni, P.W. (1988): Phys. Rev. A37 796.MathSciNetADSCrossRefGoogle Scholar
  18. Haake, F. (1990): Quantum Signatures of Chaos (Springer-Verlag, Berlin).Google Scholar
  19. Haake, F., Kus, M., Scharf, R. (1987a): Z. Physik B65 381.MathSciNetADSGoogle Scholar
  20. Haake, F., Kus, M., Scharf, R. (1987b): in Fundamentals of Quantum Optics, II, Lecture Notes in Physics. Edited by F. Ehlotzky (Springer-Verlag, Berlin).Google Scholar
  21. Hacken, G. Werbin, R. and Rainwater, J. (1978): Phys. Rev. C17 43.ADSGoogle Scholar
  22. Haller, E., Koppel, H., and Cederbaum, L.S. (1983): Chem. Phys. Lett. 101 215.ADSCrossRefGoogle Scholar
  23. Haq, R.U., Pandey, A. and Bohigas, O. (1982): Phys. Rev. Lett. 48 1086.ADSCrossRefGoogle Scholar
  24. Knox, R.S. and Gold, A. (1964): Symmetry in the Solid State (W.A. Benjamin, New York).zbMATHGoogle Scholar
  25. Kus, M., Haake, F., Scharf, R. (1987): Z. Physik B66 129.MathSciNetADSGoogle Scholar
  26. Liou, H.I., Camarda, H.S., Wynchank, S., Slagowitz, M., Hacken, G., Rahn, F., and Rainwater, J. (1972): Phys. Rev. C5 974.ADSCrossRefGoogle Scholar
  27. Martin, W.C., Zalubas, R., and Hagan, L. (1978): Atomic Energy Levels — The Rare Earth Elements U.S. National Bureau of Standards, National Standards Reference Data Series — 60 (U.S. GPO, Washington, D.C.)Google Scholar
  28. McDonald, S.W. and Kaufman, A.N. (1979): Phys. Rev. Lett. 42 1189.ADSCrossRefGoogle Scholar
  29. Meyer, S.L. (1975): Data Analysis for Scientists and Engineers (J. Wiley and Sons, Inc. New York).Google Scholar
  30. Nakamura, K. and Lakshmann, M. (1987): Phys. Rev. Lett. 57 1661.ADSCrossRefGoogle Scholar
  31. Nakamura, K. and Mikeska, H.J. (1987): Phys. Rev. A35 5294.MathSciNetADSCrossRefGoogle Scholar
  32. Pechukas, P. (1983): Phys. Rev. Lett. 51 943.MathSciNetADSCrossRefGoogle Scholar
  33. Percival, I.C. (1973): J. Phys. B6 L229.ADSGoogle Scholar
  34. Peres, A. (1991): in Quantum Chaos. Edited by H.A. Cerdeira, R. Ramaswamy, M.C. Gutzwiller, and G. Casati (World Scientific, Singapore).Google Scholar
  35. Prochnow, N.H., Newson, H.W., Bilpuch, E.G.,and Mitchell, G.E. (1972): Nucl.Phys. A194 353.zbMATHCrossRefGoogle Scholar
  36. Scharf, R., Dietz, B., Kus, M., Haake, F., and Berry, M.V. (1988): Europhysics Lett. 5 383.ADSCrossRefGoogle Scholar
  37. Seligman, T.H. and Verbaarshot, J.J.M. (1986): Phys. Rev. Lett. 56 2767.MathSciNetADSCrossRefGoogle Scholar
  38. Seligman, T.H., Verbaarshot, J.J.M., and Zirnbauer, M.R. (1984): Phys. Rev. Lett. 53 215.ADSCrossRefGoogle Scholar
  39. Smalley, R.E., Wharton, L., and Levy, D.H. (1983): J. Chem. Phys. 63 4977.ADSCrossRefGoogle Scholar
  40. Srivastava, N., Kaufman, C., Muller, G. (1990a): J. Applied Phys. 67 5627.ADSCrossRefGoogle Scholar
  41. Stockmann, H.-J. and Stein, J. (1990): Phys. Rev. Lett. 64 2215.ADSCrossRefGoogle Scholar
  42. Teller, E. (1937): J. Phys. Chem. 41 109.CrossRefGoogle Scholar
  43. Terasaka, T. and Matsushita, T. (1985): Phys. Rev. A32 538.ADSCrossRefGoogle Scholar
  44. von Neumann, J. and Wigner, E.P. (1929): Phys. Z. 30 467. (Translated into english in [Knox and Gold 1964].)zbMATHGoogle Scholar
  45. Yukawa, T. (1985): Phys. Rev. Lett. 54 1883.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • L. E. Reichl
    • 1
  1. 1.Center for Statistical Mechanics and Complex Systems, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations