Time-Periodic Systems

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


Nonlinear dynamical systems with only one space dimension can undergo a transition to chaos if they are driven by a time-periodic force. In this chapter, we focus on the dynamics of quantum systems with time-periodic Hamiltonians as they undergo a transition from a regime in which they exhibit integrable-like behavior to a regime where they exhibit the manifestations of chaos. Time-periodic systems have discrete time-translation invariance, and their dynamics is constrained by conservation laws. For such systems, the Floquet energy (also called quasienergy) is a constant of the motion even in the presence of a transition to chaos in the underlying classical phase space. For intense time-periodic fields, the Floquet states appear to describe coherent photon structures that result from the interaction between the driving field and the nonlinear forces of the driven system.


Stable Manifold Primary Resonance Microwave Field Localization Length Principal Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardsley, J.N. and Sundaram, B. (1985): Phys. Rev. A 32 689.ADSCrossRefGoogle Scholar
  2. Bayfield, J.E. (1999): Quantum Evolution (John Wiley and Sons, New York).Google Scholar
  3. Bayfield, J.E. and Koch, P.M. (1974): Phys. Rev. Lett. 33 258.ADSCrossRefGoogle Scholar
  4. Bayfield, J.E. and Pinnaduwage, L.A. (1985): Phys. Rev. Lett. 54 313.ADSCrossRefGoogle Scholar
  5. Bayfield, J.E. and Sokol, D.W. (1988): Phys. Rev. Lett. 61 2007.ADSCrossRefGoogle Scholar
  6. Berman, G.P. and Kolovsky, A.R. (1983a): Physica D 8 117.MathSciNetADSCrossRefGoogle Scholar
  7. Berman, G.P. and Kolovsky, A.R. (1983b): Phys. Lett. A 95 15.ADSCrossRefGoogle Scholar
  8. Berman, G.P. and Kolovsky, A.R. (1987): Phys. Lett. A 125 188.ADSCrossRefGoogle Scholar
  9. Berman, G.P., Vlasova, O.F., and Izrailev, F.M. (1987): Sov. Phys. JETP 66 269.Google Scholar
  10. Berman, G.P. and Zaslavsky, G.M. (1977): Phys. Lett. A 61 295.ADSCrossRefGoogle Scholar
  11. Berman, G.P., Zaslavsky, G.M., and Kolovsky, A.R. (1982): Phys. Lett. A 87 152.ADSCrossRefGoogle Scholar
  12. Bharucha, C.F., Robinson, J.C., Moore, F.L., Sundaram, B., Niu, Q., and Raizen, M.G. (1999): Phys. Rev. E 60 3881.ADSCrossRefGoogle Scholar
  13. Blumel, R., Fishman, S., Griniasti, M., and Smilansky, U. (1986): in Quantum Chaos and Statistical Nuclear Physics, Lecture Notes in Physics 263, edited by T.H. Seligman and H. Nishioko (Springer-Verlag, Berlin).CrossRefGoogle Scholar
  14. Blumel, R. and Smilansky, U. (1987): Z. Phys. D-Atoms, Molecules, and Clusters 6 83.ADSCrossRefGoogle Scholar
  15. Brown, R.C. and Wyatt, R.E. (1986): Phys. Rev. 57 1.MathSciNetADSGoogle Scholar
  16. Burns, M. and Reichl, L.E. (1992): Phys. Rev. E 45 333.ADSCrossRefGoogle Scholar
  17. Casati, G., Chirikov, B.V., Izrailev, F.M., and Ford, J. (1979): in Stochastic Behavior in Classical and Hamiltonian Systems — Lecture Notes in Physics 93, edited by G. Casati and J. Ford (Springer-Verlag, Berlin).CrossRefGoogle Scholar
  18. Casati, G., Chirikov, B.V., and Shepelyansky, D.L. (1984): Phys. Rev. Lett. 53 2525.ADSCrossRefGoogle Scholar
  19. Casati, G., Chirikov, B.V., Shepelyansky, D.L., and Guarneri, I. (1987): Phys. Rep. 154 77.ADSCrossRefGoogle Scholar
  20. Casati, G., Guarneri, L, and Shepelyansky, D.L. (1988): (IEEE) J. Quantum Electron 24 1420.ADSCrossRefGoogle Scholar
  21. Chang, S.-J. and Shi, K.-J. (1986): Phys. Rev. A 34 7.MathSciNetADSCrossRefGoogle Scholar
  22. Chirikov, B., Izrailev, F.M., and Shepelyansky, D. (1981): Sov. Sci. Rev. Sect. C 2 209.MathSciNetzbMATHGoogle Scholar
  23. Chism, W., Timberlake, T. and Reichl, L.E. (1998): Phys. Rev. A 58 1713.ADSCrossRefGoogle Scholar
  24. Cornfeld, I.P., Fornin, S.V., and Sinai, Ya.G. (1982): Ergodic Theory (Springer-Verlag, Berlin).zbMATHCrossRefGoogle Scholar
  25. Emmanouilidou, A. and Reichl, L.E. (2002): Phys. Rev. A 65 33405.ADSCrossRefGoogle Scholar
  26. Feingold, M., Fishman, S., Grempel, D.R., and Prange, R.E. (1985): Phys. Rev. B 31 6852.ADSCrossRefGoogle Scholar
  27. Galvez, E.J., Sauer, B.E., Moorman, L., Koch, P.M., and Richards, D. (1988): Phys. Rev. Lett. 61 2011.ADSCrossRefGoogle Scholar
  28. Geisel, T., Radons, G., and Rubner, J. (1986): Phys. Rev. Lett. 57 2883.ADSCrossRefGoogle Scholar
  29. Graham, R., Schlautmann, M., and Zoller, P. (1992): Phys. Rev. A 45, R19.ADSCrossRefGoogle Scholar
  30. Grempel, D.R., Prange, R.E., and Fishman, S. (1984): Phys. Rev. A 29 1639.ADSCrossRefGoogle Scholar
  31. Hensinger, W.K., Haffner, H., Browaeys, A., Heckenberg, N.R., Helmerson, K., McKenzie, C., Milburn, G.J., Phillips, W.D., Rolston, S.L., Rubinsztein-Dunlop, H., and Upcrot, B. (2001): Nature 412 52.ADSCrossRefGoogle Scholar
  32. Hose, G. and Taylor, H.S. (1983): Phys. Rev. Lett. 51 947.MathSciNetADSCrossRefGoogle Scholar
  33. Hose, G., Taylor, H.S., and Tip, A. (1984): J. Phys. A: Math. Gen. 17 1203.MathSciNetADSCrossRefGoogle Scholar
  34. Husimi, K. (1940): Proc. Phys. Math. Soc. Jpn 22 246.Google Scholar
  35. Izrailev, F.M. (1986): Phys. Rev. Lett. 56 541.ADSCrossRefGoogle Scholar
  36. Izrailev, F.M. and Shepelyansky, D. (1979): Sov. Phys. Dokl. 24 996.ADSGoogle Scholar
  37. Izrailev, F.M. and Shepelyansky, D. (1980): Theor. Math. Phys. 43 553.CrossRefGoogle Scholar
  38. Jose, J.V. and Cordery, R. (1986): Phys. Rev. Lett. 56 290.ADSCrossRefGoogle Scholar
  39. Koch, P. (1983): in Rydberg States of Atoms and Molecules, edited by R.F. Stebbings and F.B. Dunning (Cambridge University Press, Cambridge, U.K.).Google Scholar
  40. Koch, P. (1988): in Electronic and Atomic Collisions, edited by H.B. Gilbody, W.R. Newell, F.H. Read, and A.C.H. Smith (Elsevier Science Publishers B.V., New York).Google Scholar
  41. Koch, P., Moorman, L., Sauer, B.E., Galvez, E.J., and van Leeuwen, K.A.H. (1989): Phys. Scr. T 26 59.ADSGoogle Scholar
  42. Li, W. and Reichl, L.E. (1999): Phys. Rev. B 60 15732.ADSCrossRefGoogle Scholar
  43. Li, W. and Reichl, L.E. (2000): Phys. Rev. B 62 8269.ADSCrossRefGoogle Scholar
  44. Lin, W.A. and Reichl, L.E. (1987): Phys. Rev. A 36 5099.ADSCrossRefGoogle Scholar
  45. Lin, W.A. and Reichl, L.E. (1988): Phys. Rev. A 37 3972.ADSCrossRefGoogle Scholar
  46. Lin, W.A. and Reichl, L.E. (1989): Phys. Rev. A 40 1055.ADSCrossRefGoogle Scholar
  47. Luter, R. and Reichl, L.E. (2002): Phys. Rev. A 66, 53615.ADSCrossRefGoogle Scholar
  48. MacKay, R.S. and Meiss, J.D. (1988): Phys. Rev. A 37 4702.ADSCrossRefGoogle Scholar
  49. Martinez, D.F. and Reichl, L.E. (2001): Phys. Rev. B 64 245–315.Google Scholar
  50. Mehta, M.L. (1967): Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York)zbMATHGoogle Scholar
  51. Moore, F.L., Robinson, J.C., Bharucha, CF., Sundaram, B., and Raizen, M.G. (1995): Phys. Rev. Lett. 75 4598.ADSCrossRefGoogle Scholar
  52. Morrow, G.O. and Reichl, L.E. (1994): Phys. Rev. A 50 2027.ADSCrossRefGoogle Scholar
  53. Morrow, G.O. and Reichl, L.E. (1998): Phys. Rev. E 57 5266.ADSCrossRefGoogle Scholar
  54. Mouchet, A., Miniatura, C, Kaiser, R., Gremaud, B., and Delande, D. (2001): Phys. Rev. E 64 16221.ADSCrossRefGoogle Scholar
  55. Radons, G. and Prange, R.E. (1988): Phys. Rev. Lett. 61 1691.MathSciNetADSCrossRefGoogle Scholar
  56. Ramaswamy, R. (1984): J. Chem. Phys. 80 6194.ADSCrossRefGoogle Scholar
  57. Reichl, L.E. (1989): Phys. Rev. A 39 4817.ADSCrossRefGoogle Scholar
  58. Reichl, L.E. and Li, W. (1990): Phys. Rev. A 42 4543.MathSciNetADSCrossRefGoogle Scholar
  59. Reichl, L.E. and Lin, W.A. (1986): Phys. Rev. A 33 3598.ADSCrossRefGoogle Scholar
  60. Reinhold, CO., Burgdörfer, J., Frey, M.T., and Dunning, F.B. (1997): Phys. Rev. Lett. 79 5226.ADSCrossRefGoogle Scholar
  61. Sambe, H. (1973): Phys. Rev. A 7 2203.ADSCrossRefGoogle Scholar
  62. Shepelyansky, D.L. (1985): in Chaotic Behavior in Quantum Systems edited by G. Casati (Plenum Press, New York).Google Scholar
  63. Shepelyansky, D.L. (1986): Phys. Rev. Lett. 56 677.MathSciNetADSCrossRefGoogle Scholar
  64. Shepelyansky, D.L. (1987): Physica D 28 103.ADSCrossRefGoogle Scholar
  65. Shirley, J.H. (1965): Phys. Rev. 139 979.ADSCrossRefGoogle Scholar
  66. Steck, D.A., Oskay, W.H., and Raizen, M.G. (2001): Science 293 274.ADSCrossRefGoogle Scholar
  67. Steck, D.A., Oskay, W.H., and Raizen, M.G. (2002): Phys. Rev. Lett. 88 120406.ADSCrossRefGoogle Scholar
  68. Stokely, C.L., Dunning, F.B., Reinhold, C.O., and Pattanayak, A.K. (2002): Phys. Rev. A 65 21405(R).ADSCrossRefGoogle Scholar
  69. Stokely, C.L., Lancaster, J.C., Dunning, F.B., Arbo, D.G., Reinhold, CO., and Burgdörfer, J. (2003): Phys. Rev. A 67 13403.ADSCrossRefGoogle Scholar
  70. Timberlake, T. and Reichl, L.E. (1999): Phys. Rev. A 59 2886.ADSCrossRefGoogle Scholar
  71. Toda, M. and Ikeda, K. (1987): J. Phys. A 20 3833ADSCrossRefGoogle Scholar
  72. van Leeuwen, K.A.H., Oppen, G.V., Renwick, S., Bowlin, J.B., Koch, P.M., Jensen, R.V., Rath, O., Richards, D., and Leopold, J.G. (1985): Phys. Rev. 55 2231.Google Scholar
  73. Zeldovich, Y.B. (1967): Sov. Phys. JETP 24 1006.ADSGoogle Scholar
  74. Zheng, W.M. and Reichl, L.E. (1987): Phys. Rev. A 35 474.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations