Advertisement

Semiclassical Theory—Path Integrals

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

The “old quantum theory,” which is based on the Bohr-Sommerfeld quantization condition, provided a means of quantizing a classical mechanical system by quantizing the action variables associated with KAM tori. (For a historical discussion, see [Born I960].) However, it was recognized by Einstein, as early as 1917 [Einstein 1917], that this method could only be used for systems in which trajectories lie on invariant tori. The Bohr-Sommerfeld quantization condition could not be used to quantize chaotic systems and until recently no method existed to connect classically chaotic systems with their quantum counterpart.

Keywords

Periodic Orbit Chaotic System Absorption Cross Section Trace Formula Conjugate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balazs, N.L., Schmidt, C, and Voros, A. (1987): J. Stat. Phys. 46 1067.ADSzbMATHCrossRefGoogle Scholar
  2. Balazs, N.L. and Voros, A. (1986): Phys. Rep. 143 109.MathSciNetADSCrossRefGoogle Scholar
  3. Balian, R. and Block, C. (1972): Ann. Phys. 69 76.ADSzbMATHCrossRefGoogle Scholar
  4. Balian, R. and Block, C. (1974): Ann. Phys. 85 514.ADSzbMATHCrossRefGoogle Scholar
  5. Berry, M.V. (1985): Proc. Roy. Soc. London A 400 229.ADSzbMATHCrossRefGoogle Scholar
  6. Berry, M.V. and Mount, K.E. (1972): Rep. Prog. Phys. 35 315.ADSCrossRefGoogle Scholar
  7. Bleher, S., Ott, E., and Grebogi, C. (1989): Phys. Rev. Lett. 63 919.ADSCrossRefGoogle Scholar
  8. Blumel, R. and Reinhardt, W.P. (1997): Chaos in Atomic Systems (Cambridge University Press, Cambridge, U.K.).CrossRefGoogle Scholar
  9. Blumel, R. and Smilansky, U. (1988): Phys. Rev. Lett. 60 477.ADSCrossRefGoogle Scholar
  10. Born, M. (1960): The Mechanics of the Atom (Frederick Ungar, New York).Google Scholar
  11. Casati, G., Chirikov, B.V., and Guarnieri, I. (1985): Phys. Rev. Lett. 54 1350.MathSciNetADSCrossRefGoogle Scholar
  12. Choquard, Ph. (1955): Helv. Phys. Acta 28 89.MathSciNetzbMATHGoogle Scholar
  13. Delande, D. and Gay, J.C. (1986a): Phys. Rev. Lett. 57 2006.ADSCrossRefGoogle Scholar
  14. Delande, D. and Gay, J.C. (1986b): J. Phys. B 19 L173.ADSCrossRefGoogle Scholar
  15. Devaney, R.L. (1978a): J. Diff. Eqns. 29 253.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Devaney, R.L. (1978b): Invent. Math. 45 221.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Du, M.L. and Delos, J.B. (1988a): Phys. Rev. A 38 1896.ADSCrossRefGoogle Scholar
  18. Du, M.L. and Delos, J.B. (1988b): Phys. Rev. A 38 1913.ADSCrossRefGoogle Scholar
  19. Eckhardt, B. (1987): J. Phys. A 20 5971.MathSciNetADSCrossRefGoogle Scholar
  20. Eckhardt, B. and Wintgen, D. (1990): J. Phys. B 23 355.ADSCrossRefGoogle Scholar
  21. Edmonds, A.R. (1970): J. Phys. (Paris) Colloq. 31 C4–71.CrossRefGoogle Scholar
  22. Einstein, A. (1917): Verh. Dtsch. Phys. Ges. 19 82.Google Scholar
  23. Faulkner, R.A. (1969): Phys. Rev. 184 713.ADSCrossRefGoogle Scholar
  24. Feynman, R.P. and Hibbs, A.R. (1965): Quantum Mechanics and Path Integrals (McGraw-Hill, New York).zbMATHGoogle Scholar
  25. Friedrich, H. and Wintgen, D. (1989): Phys. Rep. 183 37.MathSciNetADSCrossRefGoogle Scholar
  26. Garton, W.R.S. and Tomkins, F.S. (1969): Astrophys. J. 158 839.ADSCrossRefGoogle Scholar
  27. Gaspard, P. and Rice, S.A. (1989): J. Chem. Phys. 90 2225, 2242, 2255.MathSciNetADSCrossRefGoogle Scholar
  28. Gelfand, I.M. and Yaglom, A.M. (1960): J. Math. Phys. 1 48.ADSCrossRefGoogle Scholar
  29. Gutzwiller, M.C. (1967): J. Math. Phys. 8 1979.ADSCrossRefGoogle Scholar
  30. Gutzwiller, M.C. (1970): J. Math. Phys. 11 1791.ADSCrossRefGoogle Scholar
  31. Gutzwiller, M.C. (1971): J. Math. Phys. 12 343.ADSCrossRefGoogle Scholar
  32. Gutzwiller, M.C. (1973): J. Math. Phys. 14 139.MathSciNetADSCrossRefGoogle Scholar
  33. Gutzwiller, M.C. (1977): J. Math. Phys. 18 806.MathSciNetADSCrossRefGoogle Scholar
  34. Gutzwiller, M.C. (1980): Phys. Rev. Lett. 45 150.ADSCrossRefGoogle Scholar
  35. Gutzwiller, M.C. (1982): Physica D 5 183.MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. Gutzwiller, M.C. (1985): Phys. Scr. T9 184.MathSciNetCrossRefGoogle Scholar
  37. Gutzwiller, M.C. (1990): Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin).zbMATHGoogle Scholar
  38. Hannay, J.H. and Ozorio de Almeida, A.M. (1984): J. Phys. A: Math. Gen. 17 3429.ADSCrossRefGoogle Scholar
  39. Hao, B. (1989): Elementary Symbolic Dynamics (World Scientific, Singapore).zbMATHGoogle Scholar
  40. Hasagawa, H., Robnik, M., and Wunner, G. (1989): Prog. Theor. Phys. Suppl. 98 198.ADSCrossRefGoogle Scholar
  41. Holle, A., Wiebusch, G., Main, J., Hager, B., Rottke, H., and Welge, K.H. (1986): Phys. Rev. lett. 56 2594.ADSCrossRefGoogle Scholar
  42. Jung, C. and Scholz, H-J. (1987): J. Phys. A 20 3607.MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. Kleppner, D., Littman, M.G., and Zimmerman, M.L. (1981): Sci. Am. 244 130.ADSCrossRefGoogle Scholar
  44. Littlejohn, R. (1987): Unpublished lecture notes.Google Scholar
  45. Littlejohn, R. (1991): in Quantum Chaos, edited by H.A. Cerdeira, M.C. Gutzwiller, R. Ramaswamy, and G. Casati (World Scientific, Singapore).Google Scholar
  46. Main, J., Wiebusch, G., Holle, A., and Welge, K., (1986): Phys. Rev. Lett. 57 2789.ADSCrossRefGoogle Scholar
  47. Main, J., Wiebusch, G., Welge, K., Shaw, J., and Delos, J.B. (1994): Phys. Rev. A 49 847.ADSCrossRefGoogle Scholar
  48. Mao, J.-M. and Delos, J.B. (1992): Phys. Rev. A 45 1746.ADSCrossRefGoogle Scholar
  49. McKean, H.P. (1972): Commun. Pure Appl. Math. 25 225.MathSciNetCrossRefGoogle Scholar
  50. Merzbacher, E. (1970): Quantum Mechanics (John Wiley and Sons, New York).Google Scholar
  51. Montroll, E.W. (1952): Commun. Pure Appl. Math. 5 415.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Morette, C. (1951): Phys. Rev. 81 848.MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. Papadopoulos, G.J. (1975): Phys. Rev. D 11 2870.ADSCrossRefGoogle Scholar
  54. Richens, P.J., and Berry, M.V. (1981): Physica D2 495.MathSciNetzbMATHGoogle Scholar
  55. Sakurai, J.J. (1994): Modern Quantum Mechanics (Addison-Wesley, Reading, Mass.).Google Scholar
  56. Schulman, L.S. (1981): Techniques and Applications of Path Integration (Wiley-Interscience, New York)zbMATHGoogle Scholar
  57. Selberg, A. (1956): J. Indian Math. Soc. 20 47.MathSciNetzbMATHGoogle Scholar
  58. Taylor, R.D. and Brumer, P. (1983): Faraday Discuss.Chem.Soc. 75 170.CrossRefGoogle Scholar
  59. Van Vleck, J.H. (1928): Proc. Natl. Acad. Sci. U.S.A. 14 178.ADSzbMATHCrossRefGoogle Scholar
  60. Wintgen, D. and Friedrich, H. (1986): J. Phys. B: At. Mol. Phys. 19 991.ADSCrossRefGoogle Scholar
  61. Wunner, G. and Ruder, H. (1987): Phys. Scr. 36 291.ADSCrossRefGoogle Scholar
  62. Zimmerman, M.L., Castro, J.C., and Kleppner, D. (1978): Phys. Rev. Lett. 40 1083.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations