Advertisement

Bounded Quantum Systems

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

We now begin the first of four chapters in which we study the effects of classical chaos on quantum dynamics. In this chapter, we consider the behavior of bounded systems (which have a discrete energy spectrum) in which energy is conserved. In subsequent chapters, we will consider open quantum systems (which have a continuous energy spectrum) in which energy is conserved, and we will consider systems driven by time-periodic forces in which energy is not conserved but Floquet energy (quasienergy) is conserved.

Keywords

Quantum System Heteroclinic Orbit Spectral Statistic Energy Eigenstates Neighbor Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam, O. and Fishman, S. (1993): J. Phys. A: Math. Gen. 26 2113.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Agam, O. and Fishman, S. (1994): Phys. Rev. Lett. 73 806.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Akguc, G.B. and Reichl, L.E. (2000): J. Stat. Phys. 98 813.zbMATHCrossRefGoogle Scholar
  4. Alt, H., Dembowski, C, Graf, H-D., Hofferbert, R., Rehfeld, H., Richter, A., and Schmidt, C. (1999): Phys. Rev. E 60 2851.ADSCrossRefGoogle Scholar
  5. Atkins, P.W, Child, M.S., and Phillips, C.S.G. (1970): Tables for Group Theory (Oxford University Press, Oxford).Google Scholar
  6. Balazs, N.L. and Voros, A. (1989): Ann. Phys. 190 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Berry, M.V. (1981): Ann. Phys. 131 163.ADSCrossRefGoogle Scholar
  8. Berry, M.V. (1986): in Quantum Chaos and Statistical Nuclear Physics (Lecture Notes in Physics 263), edited by T.H. Seligman and H. Nishioka (Springer-Verlag, Berlin).Google Scholar
  9. Berry, M.V. (1989): Proc. Roy. Soc. London A 423 219.ADSCrossRefGoogle Scholar
  10. Berry, M.V. and Tabor, M. (1977): Proc. Roy. Soc. London A 356 375.ADSzbMATHCrossRefGoogle Scholar
  11. Berry, M.V. and Wilkenson, M. (1984): Proc. Roy. Soc. London A 392 15.ADSzbMATHCrossRefGoogle Scholar
  12. Berry, M.V. and Keating, J.P., (1992): Proc. Roy. Soc. London A 437 151.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Bogomolny, E.B. (1988): Physica D 31 169.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Bohigas, O., Giannoni, M.J., and Schmidt, C. (1984): Phys. Rev. Lett. 52 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Brun, T.A. and Schack, R. (1999): Phys. Rev. A 59, 2649.ADSCrossRefGoogle Scholar
  16. Buminovich, L.A. (1979): Commun. Math Phys. 65, 295.ADSCrossRefGoogle Scholar
  17. Bunimovich, L. and Sinai, Ya.G. (1980a): Commun. Math. Phys. 78 247.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. Bunimovich, L. and Sinai, Ya.G. (1980b): Commun. Math. Phys. 78 479.MathSciNetADSCrossRefGoogle Scholar
  19. Bunimovich, L. and Sinai, Ya.G., (1986): Commun. Math. Phys. 107 357(E).MathSciNetADSCrossRefGoogle Scholar
  20. Casati, G., Chirikov, B.V., and Guarnieri, I. (1985): Phys. Rev. Lett. 54 1350.MathSciNetADSCrossRefGoogle Scholar
  21. Casati, G., Vals-Gris, F., and Guarnieri, I. (1980): Lett. Nuovo Cimento 28 279.MathSciNetCrossRefGoogle Scholar
  22. Chang, S-J. and Shi, K-J. (1986): Phys. Rev. A 34 7.MathSciNetADSCrossRefGoogle Scholar
  23. Cheng, Z. and Lebowitz, J.L. (1991): Phys. Rev. E 44 R3399.MathSciNetADSCrossRefGoogle Scholar
  24. Colin de Verdiere, Y. (1985): Commun. Math. Phys. 102 497.ADSzbMATHCrossRefGoogle Scholar
  25. Cornfeld, I.P., Fomin, S.V., and Sinai, Ya.G. (1982): Ergodic Theory (Springer-Verlag, New York).zbMATHCrossRefGoogle Scholar
  26. Crespi, B., Perez, G., and Chang, S-J. (1993): Phys. Rev. E 47 986.MathSciNetADSCrossRefGoogle Scholar
  27. Dittes, F-M., Doron, E., and Smilansky, U. (1994): Phys. Rev. E 49, R963.ADSCrossRefGoogle Scholar
  28. Eckhardt, B. (1988): Phys. Rep. 163 205.MathSciNetADSCrossRefGoogle Scholar
  29. Eckhardt, B. and Haake, F. (1994): J. Phys. A: Math. Gen. 27 4449.MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. Feingold, M., Littlejohn, R.G., Solina, S.B., Pehling, J.S., and Piro, O. (1990): Phys. Lett. A 146 199.MathSciNetADSCrossRefGoogle Scholar
  31. Feingold, M. and Peres, A. (1986): Phys. Rev. A 34 591.MathSciNetADSCrossRefGoogle Scholar
  32. Fishman, S., Georgeot, B., and Prange, R.E. (1996): J. Phys. A: Math. Gen. 29 919.MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Ganoulis, N. (1987): Commun. Math. Phys. 109 23.MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. Gaspard, P., Rice, S.A., and Nakamura, K. (1989): Phys. Rev. Lett. 63 930.ADSCrossRefGoogle Scholar
  35. Gibbons, J. and Hermsen, T. (1984): Physica D 11 337.MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. Goggin, M.F. and Milonni, P.W. (1988): Phys. Rev. A 37 796.MathSciNetADSCrossRefGoogle Scholar
  37. Graf, H-D., Harney, H.L., Lengeier, H., Lewenkopf, C.H., Rangacharyulu, C, Richter, A., Schardt, P., and Weidenmuller, H.A. (1992): Phys. Rev. Lett. 69 1296.ADSCrossRefGoogle Scholar
  38. Guan, X-W., Tong, D-M., and Zhou, H-Q. (1996): J. Phys. Soc. Jpn. 65 2807.MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. Gutzwiller, M.C. (1980): Ann. Phys. 124 347.MathSciNetADSCrossRefGoogle Scholar
  40. Gutzwiller, M.C. (1981): Ann. Phys. 133 304.MathSciNetADSCrossRefGoogle Scholar
  41. Haake, F. (2001): Quantum Signatures of Chaos, Second Edition (Springer-Verlag, Berlin).zbMATHCrossRefGoogle Scholar
  42. Haake, F., Kus, M., and Scharf, R. (1987a): Z. Phys. B 65 381.MathSciNetADSCrossRefGoogle Scholar
  43. Haake, F., Kus, M., and Scharf, R. (1987b): in Fundamentals of Quantum Optics, II, Lecture Notes in Physics, edited by F. Ehlotzky (Springer-Verlag, Berlin).Google Scholar
  44. Hannay, J.H., Keating, J.P., and Ozorio de Almeida, A.M. (1994): Nonlinearity 7 1327.MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. Heller, E.J. (1984): Phys. Rev. Lett. 53 1515.MathSciNetADSCrossRefGoogle Scholar
  46. Heller, E.J. (1986): in Quantum Chaos and Statistical Nuclear Physics, (Lecture Notes in Physics 263), edited by T.H. Seligman and H. Nishioka (Springer-Verlag, Berlin).CrossRefGoogle Scholar
  47. Heller, E.J., O’Conner, P.W., and Gehlen, J. (1989): Phys. Scr. 40 354.ADSzbMATHCrossRefGoogle Scholar
  48. Hietarinta, J. (1982): Phys. Lett. A 93 55.MathSciNetADSCrossRefGoogle Scholar
  49. Hietarinta, J. (1984): J. Math. Phys. 25 1833.MathSciNetADSCrossRefGoogle Scholar
  50. Hietarinta, J. (1998): Phys. Lett. A 246 97.MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. Holt, CR. (1982): J. Math. Phys. 23 1037.MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. Husimi, K. (1940): Proc.Phys. Math. Soc. Jpn. 22 246.Google Scholar
  53. Kaplan, L. and Heller, E.J. (1996): Phys. Rev. Lett. 76, 1453.ADSCrossRefGoogle Scholar
  54. Kaplan, L. and Heller, E.J. (1998): Ann. Phys. 264 171.MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. Kaplan, L. and Heller, E.J. (2000): Phys. Rev. E 62 409.MathSciNetADSCrossRefGoogle Scholar
  56. Klakow, D. and Smilansky, U. (1996): J. Phys. A: Math. Gen. 29 3213.MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. Knox, R.S. and Gold, A. (1964): Symmetry in the Solid State (W.A. Benjamin, New York).zbMATHGoogle Scholar
  58. Kudrolli, A., Sridhar, S., Pandey, A., and Ramaswamy, R. (1994): Phys. Rev. E 49 R11.ADSCrossRefGoogle Scholar
  59. Kus, M., Haake, F., and Scharf, R. (1987): Z. Phys. B 66 129.MathSciNetADSCrossRefGoogle Scholar
  60. Li, W., Reichl, L.E., and Wu, B. (2002): Phys. Rev. E 65 56220.ADSCrossRefGoogle Scholar
  61. Louisell, W.H. (1973): Quantum Statistical Properties of Radiation (Wiley-Inter science, New York).Google Scholar
  62. Luna-Acosta, G.A., Na, K., Reichl, L.E., and Krokhin, A. (1996): Phys. Rev. E 53 3271.MathSciNetADSCrossRefGoogle Scholar
  63. Luz, M.G.E. and Ozorio de Almeida, A.M. (1995): Nonlinearity 8 43.MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. Magyari, E., Thomas, H., Weber, R., Kaufman, C., and Muller, G. (1987): Z. Phys. B.-Condensed Matter 65 363.MathSciNetADSCrossRefGoogle Scholar
  65. Makino, H., Harayama, T., and Aizawa, Y. (2001): Phys. Rev. E 63 56203.ADSCrossRefGoogle Scholar
  66. Mansfield, P. (1982): Nuc. Phys. B 208 277.MathSciNetADSCrossRefGoogle Scholar
  67. McDonald, S.W. (1983): Lawrence Berkeley Laboratory Report No. LRL-14837.Google Scholar
  68. McDonald, S.W. and Kaufman, A.N. (1979): Phys. Rev. Lett. 42 1189.ADSCrossRefGoogle Scholar
  69. Nakamura, K. and Lakshmann, M. (1987): Phys. Rev. Lett. 57 1661.ADSCrossRefGoogle Scholar
  70. Nakamura, K. and Mikeska, H.J. (1987): Phys. Rev. A 35 5294.MathSciNetADSCrossRefGoogle Scholar
  71. O’Conner, P.W., Tomsovic, S., and Heller, E.J. (1992): Physics D 55, 340.ADSCrossRefGoogle Scholar
  72. Olive, D.I. and Turok, N. (1983a): Nuc. Phys. B 215 470.MathSciNetADSCrossRefGoogle Scholar
  73. Olive, D.I. and Turok, N. (1983b): Nuc. Phys. B 220 491.MathSciNetADSCrossRefGoogle Scholar
  74. Olshanetsky, M.A. and Perelomov, A.M. (1983): Phys. Rep. 94 313.MathSciNetADSCrossRefGoogle Scholar
  75. Pechukas, P. (1983): Phys. Rev. Lett. 51 943.MathSciNetADSCrossRefGoogle Scholar
  76. Percival, I.C. (1973): J. Phys. B 6 L229.ADSCrossRefGoogle Scholar
  77. Peres, A. (1984): Phys. Rev. Lett. 53 1711.ADSCrossRefGoogle Scholar
  78. Peres, A. (1991): in Quantum Chaos, edited by H.A. Cerdeira, R. Ramaswamy, M.C. Gutzwiller, and G. Casati (World Scientific, Singapore).Google Scholar
  79. Ree, S. and Reichl, L.E. (1999): Phys. Rev. E 60 1607.ADSCrossRefGoogle Scholar
  80. Robb, D.T. and Reichl, L.E. (1998): Phys. Rev. E 57 2458.ADSCrossRefGoogle Scholar
  81. Saraceno, M. (1990): Ann. Phys. N.Y. 199 37.MathSciNetADSzbMATHCrossRefGoogle Scholar
  82. Saraceno, M. and Voros, A. (1994): Physica D 79 206.MathSciNetADSzbMATHGoogle Scholar
  83. Schack, R. (1998): Phys. Rev. A 57 1634.MathSciNetADSCrossRefGoogle Scholar
  84. Scharf, R., Dietz, B., Kus, M., Haake, F., and Berry, M.V. (1988): Europhys. Lett. 5 383.ADSCrossRefGoogle Scholar
  85. Schnirelman, A.I. (1974): Usp. Mat. Nauk. 29 181.Google Scholar
  86. Seligman, T.H. and Verbaarschot, J.J.M. (1986): Phys. Rev. Lett. 56 2767.MathSciNetADSCrossRefGoogle Scholar
  87. Seligman, T.H., Verbaarschot, J.J.M., and Zirnbauer, M.R. (1984): Phys. Rev. Lett. 53 215.ADSCrossRefGoogle Scholar
  88. Simonotti, F.P., Vergini, E., and Saraceno, M. (1997): Phys. Rev. E 56 3859.MathSciNetADSCrossRefGoogle Scholar
  89. Sinai, Ya. G. (1968a): Funct. Anal. Appl. 2 61.zbMATHCrossRefGoogle Scholar
  90. Sinai, Ya. G. (1968b): Funct. Anal. Appl. 2 245.zbMATHCrossRefGoogle Scholar
  91. Sinai, Ya. G. (1970): Russ. Math. Surv. 25 137.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Soklakov, A.N. and Schack, R. (2000): Phys. Rev. E 61, 5108.MathSciNetADSCrossRefGoogle Scholar
  93. Sridhar, S. (1991): Phys. Rev. Lett. 67 785.ADSCrossRefGoogle Scholar
  94. Srivastava, N., Kaufman, C., Muller, G., Weber, R., and Thomas, H. (1988): Z. Phys. B-Condensed Matter 70 251.MathSciNetADSCrossRefGoogle Scholar
  95. Srivastava, N., Kaufman, C., and Muller, G. (1990): J. Appl. Phys. 67 5627.ADSCrossRefGoogle Scholar
  96. Srivastava, N. and Muller, G. (1990): Z. Phys. B 80 137.MathSciNetADSCrossRefGoogle Scholar
  97. Stein, J. and Stöckmann, H-J. (1992): Phys. Rev. Lett. 68 2867.ADSCrossRefGoogle Scholar
  98. Stöckmann, H-J (1999): Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, U.K.).zbMATHGoogle Scholar
  99. Stöckmann, H.-J. and Stein, J. (1990): Phys. Rev. Lett. 64 2215.ADSCrossRefGoogle Scholar
  100. Tanner, G. (1999): J. Phys. A: Math. Gen. 32 5071.MathSciNetADSzbMATHCrossRefGoogle Scholar
  101. Teller, E. (1937): J. Phys. Chem. 41 109.CrossRefGoogle Scholar
  102. Terasaka, T. and Matsushita, T. (1985): Phys. Rev. A 32 538.ADSCrossRefGoogle Scholar
  103. Toscano, F., Vallejos, R.O., and Saraceno, M. (1997): Nonlinearity 10 965.MathSciNetADSzbMATHCrossRefGoogle Scholar
  104. van Ede van der Pals, P. and Gaspard, P. (1994): Phys. Rev. E 49 79.ADSCrossRefGoogle Scholar
  105. von Neumann, J. and Wigner, E.P. (1929): Phys. Z. 30 467. (Translated into English in [Knox and Gold 1964].)zbMATHGoogle Scholar
  106. Yukawa, T. (1985): Phys. Rev. Lett. 54 1883.ADSCrossRefGoogle Scholar
  107. Zaslavsky, G.M. (1981): Phys. Rep. 80 157.MathSciNetADSCrossRefGoogle Scholar
  108. Zeldich, S. (1987): Duke Math. J. 55 919.MathSciNetCrossRefGoogle Scholar
  109. Zhou, H-Q. (1996): J. Phys. A: Math. Gen. 29 L489.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations