Fundamental Concepts

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


There are three basic concepts that are essential for understanding the dynamical behavior of nonlinear conservative systems. The first is the concept of global symmetries, which serve to constrain the dynamical flow of the system to lower-dimensional surfaces in the phase space. Some of these global symmetries are obvious and are related to the space-time symmetries of the system. Others are not obvious and have been called hidden symmetries by Moser [Moser 1979]. When there are as many global symmetries as degrees of freedom, the dynamical system is said to be integrable. The second important concept is that of nonlinear resonance. As Kolmogorov [Kolmogorov 1954], Arnol’d [Arnol’d 1963], and Moser [Moser 1962] have shown, when a small symmetry-breaking term is added to the Hamilto-nian, most of the phase space continues to behave as if the symmetries still exist. However, in regions where the symmetry-breaking term allows resonance to occur between otherwise uncoupled degrees of freedom, the dynamics begins to change its character. When resonances do occur, they generally occur on all scales in the phase space and give rise to an incredibly complex structure, as we shall see. The third important concept is that of chaos or sensitive dependence on initial conditions.


Phase Space Canonical Transformation Toda Lattice Nonlinear Resonance Bernoulli Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel, H. (1976): in Studies in Math Physics, edited by E. Lieb, B. Simon, and A.S. Wrightman, Princeton Series in Physics (Princeton University Press, Princeton, N.J.).Google Scholar
  2. Arnol’d, V.I. (1963): Russ. Math. Surv. 18 9zbMATHCrossRefGoogle Scholar
  3. Arnol’d, V.I. (1963): Russ. Math. Surv. 18 85.zbMATHCrossRefGoogle Scholar
  4. Arnol’d, V.I. and Avez, A. (1968): Ergodic Problems of Classical Mechanics (W.A. Benjamin, New York).zbMATHGoogle Scholar
  5. Barrar, R. (1970): Celestial Mech. 2 494.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. Benettin, G., Galgani, L., and Strelcyn, J.M. (1976): Phys. Rev. A 14 2338.ADSCrossRefGoogle Scholar
  7. Benettin, G. and Strelcyn, J.M. (1978): Phys. Rev. A 17 773.ADSCrossRefGoogle Scholar
  8. Benettin, G., Froeshle, C, and Scheidecker, J.P. (1979): Phys. Rev. A 19 2454.MathSciNetADSCrossRefGoogle Scholar
  9. Berry, M.V. (1978): AIP Conference Proceedings 46 (American Institute of Physics, New York), p. 16. Reprinted in [MacKay and Meiss 1987].CrossRefGoogle Scholar
  10. Bunimovich, L.A. (1974): Funct. Anal. Appl. 8 254.zbMATHCrossRefGoogle Scholar
  11. Byrd, P.F. and Friedman, M.D. (1971): Handbook of Elliptic Integrals for Engineers and Scientists (Springer-Verlag, Berlin).zbMATHCrossRefGoogle Scholar
  12. Casartelli, M., Diana, E., Galgani, L., and Scotti, A. (1976): Phys. Rev. A 13 1921.ADSCrossRefGoogle Scholar
  13. Chirikov, B. (1979): Phys. Rep. 52 263.MathSciNetADSCrossRefGoogle Scholar
  14. Date, E. and Tanaka, S. (1976): Prog. Theor. Phys. 55 457MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Date, E. and Tanaka, S. (1976): Prog. Theor. Phys. Suppl. 59 107.MathSciNetADSCrossRefGoogle Scholar
  16. Davis, H.T. (1962): Introduction to Nonlinear Differential and Integral Equations (Dover, New York).zbMATHGoogle Scholar
  17. Duffing, G. (1918): Erzwungene Schwingungen bei veranderlicher Eigenfrequenz (Braunschweig, Vieweg).Google Scholar
  18. Farquhar, I.E. (1964): Ergodic Theory in Statistical Mechanics (Wiley-Interscience, New York).Google Scholar
  19. Farquhar, I.E. (1972): in Irreversibility in the Many-Body Problem, edited by J. Beil and J. Rae (Plenum Press, New York).Google Scholar
  20. Flaschka, H. (1974): Phys. Rev. B 9 1924.MathSciNetADSCrossRefGoogle Scholar
  21. Ford, J., Stoddard, D.S., and Turner, J.S. (1973): Prog. Theor. Phys. 50 1547.ADSCrossRefGoogle Scholar
  22. Goldstein, H. (1980): Classical Mechanics (Addison-Wesley, Reading, Mass.).zbMATHGoogle Scholar
  23. Henon, M. and Heiles, C. (1964): Astron. J. 69 73.MathSciNetADSCrossRefGoogle Scholar
  24. Henon, M. (1974): Phys. Rev. B 9 1921.MathSciNetADSCrossRefGoogle Scholar
  25. Kac, M. and van Moerbeke, P.(1975): Proc. Natl. Acad. Sci. U.S.A. 72 2879.ADSzbMATHCrossRefGoogle Scholar
  26. Kolmogorov, A.N. (1954): Dokl. Akad. Nauk. SSSR 98 527 (1954) (An English version appears in R. Abraham, Foundations of Mechanics (W.A. Benjamin, New York, 1967, Appendix D).MathSciNetzbMATHGoogle Scholar
  27. Kolmogorov, A.N. (1958): Dokl. Akad. Nauk SSSR 119 861.MathSciNetzbMATHGoogle Scholar
  28. Kolmogorov, A.N. (1959): Dokl. Akad. Nauk SSSR 124 754.MathSciNetzbMATHGoogle Scholar
  29. Lax, P.D. (1968): Commun. Pure Appl. Math. 21 467.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Lebowitz, J.L. and Penrose, O. (1973): Physics Today, February Issue.Google Scholar
  31. Lichtenberg, A.J. and Lieberman, M.A. (1983): Regular and Stochastic Motion (Springer-Verlag, New York).zbMATHCrossRefGoogle Scholar
  32. Lin, W.A. and Reichl, L.E. (1985): Phys .Rev. A 31 1136.ADSCrossRefGoogle Scholar
  33. MacKay, R.S. and Meiss, J.D. (1987): Hamiltonian Dynamical Systems (Adam Hilger, Bristol).zbMATHGoogle Scholar
  34. Meyer, H.D.(1986): J. Chem. Phys. 84 3147.MathSciNetADSCrossRefGoogle Scholar
  35. Moser, J. (1962): Nachr. Akad. Wiss. Goettingen II, Math. Phys. Kd 1 1.Google Scholar
  36. Moser, J. (1970): Commun. Pure Appl. Math 23 609.ADSzbMATHCrossRefGoogle Scholar
  37. Moser, J. (1973): Stable and Random Motions in Dynamical Systems (Princeton University Press, Princeton, N.J.).zbMATHGoogle Scholar
  38. Moser, J. (1979): Am. Sci. 67 689.ADSGoogle Scholar
  39. Noether, E. (1918): Nach. Ges. Wiss. Goettingen 2 235.Google Scholar
  40. Ornstein, D.S. (1974): Ergodic Theory, Randomness, and Dynamical Systems (Yale University Press, New Haven).zbMATHGoogle Scholar
  41. Oseledec, V.I. (1968): Trans. Moscow Math. Soc. 19 197.MathSciNetGoogle Scholar
  42. Penrose, O. (1970): Foundations of Statistical Mechanics (Pergamon Press, Oxford).zbMATHGoogle Scholar
  43. Piesin, Ya.G. (1976): Math. Dokl. 17 196.Google Scholar
  44. Ramani, A., Grammaticos, B., and Bountis, T. (1989): Phys. Rep. 180 159.MathSciNetADSCrossRefGoogle Scholar
  45. Reichl, L.E. (1998): A Modern Course in Statistical Physics, Second Edition (John Wiley and Sons, New York).zbMATHGoogle Scholar
  46. Reichl, L.E. and Zheng, W.M. (1984a): Phys. Rev. A 29 2186.ADSCrossRefGoogle Scholar
  47. Reichl, L.E. and Zheng, W.M. (1984b): Phys. Rev. A 30 1068.ADSCrossRefGoogle Scholar
  48. Reichl, L.E. and Zheng, W.M. (1988): in Directions in Chaos, edited by Hao Bailin (World Scientific, Singapore).Google Scholar
  49. Sinai, Ya.G. (1963a): Am. Math. Soc. Transi. 31 62.zbMATHGoogle Scholar
  50. Sinai, Ya.G. (1963b): Sov. Math. Dokl. 4 1818.MathSciNetGoogle Scholar
  51. Toda, M. (1967): J. Phys. Soc. Jpn. 22 431Google Scholar
  52. Toda, M. (1967): J. Phys. Soc. Jpn. 23 501.ADSCrossRefGoogle Scholar
  53. Toda, M. (1981): Theory of Nonlinear Lattices (Springer-Verlag, Berlin)zbMATHCrossRefGoogle Scholar
  54. Walker, G.H. and Ford, J. (1969): Phys. Rev. 188 416.MathSciNetADSCrossRefGoogle Scholar
  55. Wintner, A. (1947): The Analytical Foundations of Celestial Mechanics (Princeton University Press, Princeton, N.J.).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations