Stochastic Manifestations of Chaos

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


The dynamics of a large class of stochastic systems is governed by Hamiltonians that can be obtained from the stochastic dynamical equations of these systems via an appropriate transformation, [Risken 1984], [Graham and Tel 1984], [Reichl 1998]. When the Hamiltonian system exhibits a transition to chaos, the decay rates of the stochastic equations show level repulsion. In the sections below, we demonstrate this correspondence between stochastic systems and deterministic Hamiltonian systems, for three different types of stochastic processes. We first consider Brownian motion in two space dimensions, then a random walk in two space dimensions, and finally a Brownian motion in one space dimension, driven by a time-periodic force.


Brownian Motion Decay Rate Transition Rate Space Dimension Stochastic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpatov, P. and Reichl, L.E. (1994): Phys. Rev. E 49 2630.ADSCrossRefGoogle Scholar
  2. Alpatov, P. and Reichl, L.E. (1995): Phys. Rev. E 52 4516.ADSCrossRefGoogle Scholar
  3. Graham, R. and Tel, T. (1984): Phys. Rev. lett. 52 9.MathSciNetADSCrossRefGoogle Scholar
  4. Grobe, R., Haake, F., and Sommers, H.-J. (1989): Phys. Rev. Lett. 61 1899.MathSciNetADSCrossRefGoogle Scholar
  5. Haake, F. (1990): The Quantum Signatures of Chaos (Springer-Verlag, Berlin).Google Scholar
  6. Kim, S. and Reichl, L.E. (1996): Phys. Rev. E 53 3088.ADSCrossRefGoogle Scholar
  7. Millonas, M. and Reichl, L.E. (1992): Phys. Rev. Lett. 68 3125.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Reichl, L.E. (1998): A Modern Course in Statistical Physics, Second Edition (Wiley-Interscience, New York).zbMATHGoogle Scholar
  9. Reichl, L.E., Chen, Z.-Y., and Millonas, M. (1989): Phys. Rev. Lett. 63 2013.ADSCrossRefGoogle Scholar
  10. Reichl, L.E., Chen, Z.-Y., and Millonas, M.M. (1990): Phys. Rev. A 41 1874.MathSciNetADSCrossRefGoogle Scholar
  11. Risken, H. (1984): The Fokker-Planck Equation (Springer-Verlag, Berlin).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations