Skip to main content

Spontaneous Activity of Auditory Afferent Neurones in the Spiral Ganglion of the Pigeon

  • Conference paper
The Mechanics and Biophysics of Hearing

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 87))

  • 359 Accesses

Abstract

In the avian (Manley, 1979; Manley and Gleich, 1984; Manley et al., 1985; Temchin, 1988) and reptilian (Crawford and Fettiplace, 1980; Eatock et aI., 1981) auditory nerves there exists a population of afferent fibres which exhibit quasiperiodic spontaneous activity. The interval histogram of such activity shows decaying maxima, separated at approximately equal intervals, named the preferred interval by Manley (1979). These histograms contrast with those reported for other species (e.g. Kiang, 1965; Walsh et al., 1972; Robertson and Manley, 1974), and with the balance of histograms from other fibres in birds and reptiles, where after an absolute refractory period the interval histogram decays exponentially from it’s modal value, as if generated by a truncated, homogeneous Poisson process. However, for quasiperiodic spontaneous activity both the modal interval and the preferred interval are related to the characteristic frequency (CF) of the neurone. Earlier reports (Manley, 1979; Crawford and Fettiplace, 1980; Eatock et al., 1981), as well as the one by Temchin(1988), report that the modal and preferred intervals are approximately equal to the CF-period, whereas the more recent papers from Manley and coworkers (Manley and Gleich, 1984; Manley et al., 1985) maintain that these intervals are on average 15% longer than the CF-period. In these papers Manley estimated the preferred interval as the weighted average of the intervals of the second and higher maxima of the interval histogram, whereas Temchin(1988) calculated it from the number of minima in a specified time frame of the autocorrelation histogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions. Dover, New York.

    Google Scholar 

  • Bailey, N.T J. (1967) The elements of Stochastic Processes. 1. Wiley, New York.

    Google Scholar 

  • Bi, Q., Brown, J.L. Jr. and Lachs, G. (1988) Statistical expectation of the interval histograms from marginal time statistics of the Poisson process. J. Acousl. Soc. Am. 83, 1186–1189.

    Google Scholar 

  • Cox, D.R and Miller, H.D. (1968) The Theory of Stochastic Processes. Methuen, London.

    Google Scholar 

  • Crawford, A.C. and Fettiplace, R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J. Physiol. 306, 79 - 115.

    Google Scholar 

  • Eatock, R.A., Manley, G.A. and Pawson, L. (1981) Auditory nerve fibre activity in the Tokay Gecko. I. Implications for cochlear processing. J. Comp. Physiol. 142, 203–218.

    Google Scholar 

  • Flock, A. and Russell, I. (1976) Inhibition by efferent nerve fibres: Action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot LoUllota. J. Physiol. 157, 45–62.

    Google Scholar 

  • Gummer, A.W., Smolders, J.W.T. and Klinke, R. (1987) Basilar membrane motion in the pigeon measured with the Moessbauer technique. Hear. Res. 29, 63–92.

    Google Scholar 

  • Hill, K.G., Stange, G., Gummer, AW. and Mo, J. (1989) A model proposing synaptic and extra-synaptic influences on the responses of cochlear nerve fibres. Hear. Res. 39, 75–90.

    Google Scholar 

  • Johannesma, P.I.M. (1969) Diffusion models for the stochastic activity of neurons. In: Neural Networks (Ed: Caianiello, E.R) Springer-Verlag, Berlin, Heidelberg, New York, pp. 116 - 144.

    Google Scholar 

  • Johnson, D.H. (1974) The Response of Single Auditory-Nerve Fibers in the Cat to Single Tones: SynChrony and Average Discharge Rate. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • Kiang, N.Y.-S. (1965) Discharge Patterns of single fibers in the cat’s auditory nerve. M. I. T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Manley, G.A. (1979) Preferred intervals in the spontaneous activity of primary auditory neurons. Naturwissen. 66, 582 - 584.

    Article  ADS  Google Scholar 

  • Manley, G.A. and Gleich, O. (1984) Avian primary auditory neurons. Naturwissen. 71, 592 - 594.

    Article  ADS  Google Scholar 

  • Manley, G.A., Gleich, O., Leppelsack, H.-J. and Oeckinghaus, H. (1985) Activity patterns of cochlear ganglion neurones in the starling. J. Comp. Physiol. A 157, 161-181.

    Google Scholar 

  • Robertson, D. and Manley, G.A. (1974) Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J. Comp. Physiol. 91, 363–375.

    Google Scholar 

  • Siebert, W.M. (1970) Frequency discrimination in the auditory system: place or periodicity mechanisms? Proc. IEEE 58, 723 - 730.

    Article  Google Scholar 

  • Stein, R.B. (1965) A theoretical analysis of neuronal variability. Biophys. J. 5, 173-194.

    Google Scholar 

  • Synder, D.L. (1975). Random Point Processes. J. Wiley, New York.

    Google Scholar 

  • Temchin, A.N. (1988) Unusual discharge patterns of single fibers in the pigeon’s auditory nerve. J. Comp. Physiol. A 163, 99-115.

    Google Scholar 

  • Walsh, B.T., Miller, J.B., Gacek, RR and Kiang, N.Y.-S. (1972) Spontaneous activity in the eighth cranial nerve of the cat. Intern. J. Neurosci. 3, 221–236.

    Google Scholar 

  • Wilbur, W J. and Rinzel, J. (1982) An analysis of Stein’s model for stochastic neuronal excitation. BioI. Cybern. 45, 107–114.

    Google Scholar 

  • Wolberg, J.R (1967) Prediction Analysis. D. van Nostrand, New Jersey.

    MATH  Google Scholar 

  • Gleich, O. (1988). Doctoral Thesis, Department of Zoology, Technical University, Munich.

    Google Scholar 

  • Narins, P.M., Gleich, O. (1986). Phase response of low-frequency cochlear ganglion cells in the starling. In: Auditory Frequency Selectivity (Ed: Moore, B.C.J., and Patterson, R.D.) Plenum Pub. Co., pp. 209 - 216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gummer, A.W. (1990). Spontaneous Activity of Auditory Afferent Neurones in the Spiral Ganglion of the Pigeon. In: Dallos, P., Geisler, C.D., Matthews, J.W., Ruggero, M.A., Steele, C.R. (eds) The Mechanics and Biophysics of Hearing. Lecture Notes in Biomathematics, vol 87. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4341-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4341-8_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97473-6

  • Online ISBN: 978-1-4757-4341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics