Advertisement

Which Special Kinds of Primes Have Been Considered?

  • Paulo Ribenboim

Abstract

We have already encountered several special kinds of primes, for example, those which are Fermat numbers, or Mersenne numbers (see Chapter 2). Now I shall discuss other families of primes, among them the regular primes, the Sophie Germain primes, the Wieferich primes, the Wilson primes, the prime repunits, the primes in second-order linear recurring sequences.

Keywords

Prime Number Prime Ideal Special Kind Bernoulli Number Fibonacci Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1948.
    GUNDERSON, N.G. Derivation of Criteria for the First Case of Fermat’s Last Theorem and the Combination of these Criteria to Produce a New Lower Bound for the Exponent.Ph.D. Thesis, Cornell University, 1948, 111 pages.Google Scholar
  2. 1951.
    DÉNES, P. An extension of Legendre’s criterion in connection with the first case of Fermat’s last theorem. Publ. Math. Debrecen, 2, 1951, 115–120.zbMATHGoogle Scholar
  3. 1953.
    GOLDBERG, K. A table of Wilson quotients and the third Wilson prime. J. London Math. Soc., 28, 1953, 252–256.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 1954.
    WARD, M. Prime divisors of second order recurring sequences. Duke Math. J., 21, 1954, 607–614.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 1956.
    OBLATH, R. Une propriété des puissances parfaites. Mathesis, 65, 1956, 356–364.MathSciNetzbMATHGoogle Scholar
  6. 1960.
    SIERPINSKI, W. Sur un problème concernant les nombresk 2’ + 1. Elem. d. Math., 15, 1960, 73–74.MathSciNetzbMATHGoogle Scholar
  7. 1963.
    BRILLHART, J. Some miscellaneous factorizations. Math. Comp., 17, 1963, 447–450.zbMATHCrossRefGoogle Scholar
  8. 1964.
    SIEGEL, C.L. Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51–62. Reprinted inGesammelte Abhandlungen (edited by K. Chandrasckharan & M. Maaß), Vol. III, 436–442. Springer-Verlag, Berlin, 1966.Google Scholar
  9. 1965.
    KLOSS, K.E. Some number theoretic calculations. J. Res. Nat. Bureau of Stand., B, 69, 1965, 335–336.MathSciNetzbMATHGoogle Scholar
  10. 1966.
    HASSE, H. Uber die Dichte der Primzahlenp, fur die eine vorgegebene ganzrationale Zahl a 0 von gerader bzw. ungerader Ordnung modp ist. Math. Ann., 168, 1966, 19–23.MathSciNetCrossRefGoogle Scholar
  11. 1966.
    KRUYSWIJK, D. On the congruence uP-1–1 (mod p2) (in Dutch). Math. Centrum Amsterdam, 1966, 7 pages.Google Scholar
  12. 1971.
    BRILLHART, J., TONASCIA, J., & WEINBERGER, P.J. On the Fermat quotient. Computers in Number Theory (edited by A.L. Atkin & B.J. Birch), 213–222. Academic Press, New York, 1971.Google Scholar
  13. 1975.
    JOHNSON, W. Irregular primes and cyclotomic invariants. Math. Comp., 29, 1975, 113–120.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 1978.
    WAGSTAFF, Jr., S.S. The irregular primes to 125000. Math. Comp., 32, 1978, 583–591.MathSciNetzbMATHGoogle Scholar
  15. 1978.
    WILLIAMS, H.C. Some primes with interesting digit patterns. Math. Comp., 32, 1978, 1306–1310.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 1979.
    ERDÖS, P. & ODLYZKO, A.M. On the density of odd integers of the form(p - 1)2-n and related questions. J. Nb. Th., 11, 1979, 257–263.zbMATHCrossRefGoogle Scholar
  17. 1979.
    RIBENBOIM, P. 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York, 1979.zbMATHCrossRefGoogle Scholar
  18. 1979.
    WILLIAMS, H.C. & SEAH, E. Some primes of the form (an–1)/(a–1). Math. Comp., 33, 1979, 1337–1342.MathSciNetzbMATHGoogle Scholar
  19. 1980.
    POWELL, B. Primitive densities of certain sets of primes. J. Nb. Th., 12, 1980, 210–217.zbMATHGoogle Scholar
  20. 1981.
    LEHMER, D.H. On Fermat’s quotient, base two. Math. Comp., 36, 1981, 289–290.MathSciNetzbMATHGoogle Scholar
  21. 1982.
    POWELL, B. Problem E 2956 (The existence of small prime solutions of xP-1 # 1 (modp 2 )). Amer. Math. Monthly, 89, 1982, p. 498.CrossRefGoogle Scholar
  22. 1982.
    YATES, S. Repunits and Repetends. Star Publ. Co., Boynton Beach, Florida, 1982.Google Scholar
  23. 1983.
    JAESCHKE, G. On the smallestk such thatk • 2 N + 1 are composite. Corrigendum. Math. Comp., 40, 1983, 381–384;MathSciNetzbMATHGoogle Scholar
  24. 1983.
    JAESCHKE, G. On the smallestk such thatk • 2 N + 1 are composite. Corrigendum. Math. Comp., 45, 1985, p. 637.MathSciNetzbMATHGoogle Scholar
  25. 1983.
    KELLER, W. Factors of Fermat numbers and large primes of the formk · 2 + 1. Math. Comp., 41, 1983, 661–673.MathSciNetzbMATHGoogle Scholar
  26. 1983.
    RIBENBOIM, P. 1093. Math. Intelligencer, 5, No. 2, 1983, 28–34.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 1985.
    LAGARIAS, J.C. The set of primes dividing the Lucas numbers has density 3. Pacific J. Math., 118, 1985, 19–23.MathSciNetGoogle Scholar
  28. 1986.
    TZANAKIS, N. Solution to problem E 2956. Amer. Math. Monthly, 93, 1986, p. 569.MathSciNetGoogle Scholar
  29. 1986.
    WILLIAMS, H.C. & DUBNER, H. The primality of R1031. Math. Comp., 47, 1986, 703–712.MathSciNetzbMATHGoogle Scholar
  30. 1987.
    GRANVILLE, A.J.Diophantine Equations with Variable Exponents with Special Reference to Fermat’s Last Theorem.Ph.D. Thesis, Queen’s University, Kingston, 1987, 207 pages.Google Scholar
  31. 1987.
    ROTKIEWICZ, A. Note on the diophantine equation 1 +x + x 2 +... + xn = ym. Elem. d. Math., 42, 1987, p. 76.MathSciNetzbMATHGoogle Scholar
  32. 1987.
    TANNER, J.W. & WAGSTAFF, Jr., S.S. New congruences for the Bernoulli numbers. Math. Comp., 48, 1987, 341–350.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 1988.
    GONTER, R.H. & KUNDERT, E.G. Wilson’s theorem (mod p) (n-1)! - -1 (modp2), has been computed up to 10,000,000. Fourth SIAM Conference on Discrete Mathematics, San Francisco, June 19, 1988.Google Scholar
  34. 1988.
    GRANVILLE, A. & MONAGAN, M.B. The first case of Fermat’s last theorem is true for all prime exponents up to 714, 591, 416, 091 389. Trans. Amer. Math. Soc., 306, 1988, 329–359.Google Scholar
  35. 1989.
    LÖH, G. Long chains of nearly doubled primes. Math. Comp., 53, 1989, 751–759.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 1989.
    TANNER, J.W. & WAGSTAFF, Jr., S.S. New bound for the first case of Fermat’s last theorem. Math. Comp., 53, 1989, 743–750.MathSciNetzbMATHGoogle Scholar
  37. 1990.
    COPPERSMITH, D. Fermat’s last theorem (case I) and the Wieterich criterion. Math. Comp., 54, 1990, 895–902.MathSciNetzbMATHGoogle Scholar
  38. 1991.
    BUHLER, J.P., CRANDALL, R.E., & SOMPOLSKI, R.W. Irregular primes to one million (preprint).Google Scholar
  39. 1991.
    FEE, G. & GRANVILLE, A. The prime factors of Wendt’s binomial circulant determinant. To appear.Google Scholar
  40. 1991.
    SUZUKI, J. Some computations of the generalized Wieferich criteria. Math. Comp., 56, 1991 (to appear).Google Scholar

Copyright information

© Paulo Ribenboim 1991

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations