Skip to main content

How Are the Prime Numbers Distributed?

  • Chapter
The Little Book of Big Primes
  • 247 Accesses

Abstract

As I have already stressed, the various proofs of existence of infinitely many primes are not constructive and do not give an indication of how to determine the nth prime number The proofs also do not indicate how many primes are less than any given number N. By the same token, there is no reasonable formula or function representing primes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MEISSEL, E.D.F. Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde natürlicher Zahlen vorkommen. Math. Ann., 25, 1885, 251–257.

    MathSciNet  Google Scholar 

  2. SYLVESTER, J.J. On arithmetical series. Messenger of Math., 21, 1892, 1–19 and 87–120. Reprinted inGesammelte Abhandlungen, Vol. III, 573–587. Springer-Verlag, New York, 1968.

    Google Scholar 

  3. VON KOCH, H. Sur la distribution des nombres premiers. Acta Math., 24, 1901, 159–182.

    MathSciNet  Google Scholar 

  4. WOLFSKEHL, P. Ueber eine Aufgabe der elementaren Arithmetik. Math. Ann., 54, 1901, 503–504.

    MathSciNet  MATH  Google Scholar 

  5. LANDAU, E. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig, 1909. Reprinted by Chelsea, Bronx, N.Y., 1974.

    Google Scholar 

  6. LITTLEWOOD, J.E. Sur la distribution des nombres premiers. C.R. Acad. Sci. Paris, 158, 1914, 869–872.

    Google Scholar 

  7. BRUN, V. Le crible d’Eratosthène et le théorème de Goldbach. C.R. Acad. Sci. Paris, 168, 1919, 544–546.

    MATH  Google Scholar 

  8. BRUN, V. La série 5+7+11+13+17+19+29+31+ 41 + 43 + 59 + 61 +... où les dénominateurs sont “nombres premiers jumeaux” est convergente ou finie. Bull. Sci. Math., (2), 43, 1919, 100–104 and 124–128.

    Google Scholar 

  9. BRUN, V. Le crible d’Erathostène et la théorème de Goldbach. Videnskapsselskapets Skrifter Kristiania, Mat.-nat. Kl. 1920, No. 3, 36 pages.

    Google Scholar 

  10. HARDY, G. H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted inCollected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.

    Google Scholar 

  11. ERDOS, P. Beweis eines Satzes von Tschebycheff. Acta Sci. Math. Szeged, 5, 1930, 194–198.

    Google Scholar 

  12. HOHEISEL, G. Primzahlprobleme in der Analysis. Sitzungsberichte Berliner Akad. d. Wiss., 1930, 580–588.

    Google Scholar 

  13. SCHNIRELMANN, L. Uber additive Eigenschaften von Zahlen. Ann. Inst. Polytechn. Novocerkask, 14, 1930, 3–28 and Math. Ann., 107, 1933, 649–690.

    Google Scholar 

  14. SKEWES, S. On the differencer(x) — li(x). J. London Math. Soc., 8, 1933, 277–283.

    MathSciNet  Google Scholar 

  15. ISHIKAWA, H. Uber die Verteilung der Primzahlen. Sci. Rep. Tokyo Bunrika Daigaku, A, 2, 1934, 27–40.

    Google Scholar 

  16. CRAMÉR, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arithm., 2, 1937, 2346.

    Google Scholar 

  17. INGHAM, primes. Quart. 255–266.

    Google Scholar 

  18. LANDAU, A.E. On the difference between consecutive J. Pure Si Appl. Math., Oxford, Ser. 2, 8, 1937, E. Über einige neuere Fortschritte der additiven Zahlentheorie. Cambridge Univ. Press, Cambridge, 1937. Reprinted by Stechert-Hafner, New York, 1964.

    Google Scholar 

  19. VAN DER CORPUT, J.G. Sur l’hypothèse de Goldbach pour presque tous les nombres pairs. Acta Arithm., 2, 1937, 266–290.

    Google Scholar 

  20. VINOGRADOV, I.M. Representation of an odd number as the sum of three primes (in Russian). Dokl. Akad. Nauk SSSR, 15, 1937, 169–172.

    MATH  Google Scholar 

  21. ESTERMANN, T. Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc., 44, 1938, 307–314.

    Google Scholar 

  22. POULET, P. Table des nombres composés vérifiant le théorème de Fermat pour le module 2, jusqu’ à 100.000.000. Sphinx, 8, 1938, 52–52 Corrections: Math. Comp., 25, 1971, 944–945 and 26, 1972, p. 814.

    Google Scholar 

  23. ROSSER, J.B. The nth prime is greater than n log n. Proc. London Math. Soc. 45, 1938, 21–44.

    Google Scholar 

  24. TSCHUDAKOFF, N.G. On the density of the set of even integers which are not representable as a sum of two odd primes (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 1, 1938, 25–40.

    Google Scholar 

  25. VAN DER CORPUT, J.G. Über Summen von Primzahlen und Prim-zahlquadraten. Math. Ann., 116, 1939, 1–50.

    MathSciNet  Google Scholar 

  26. LINNIK, Yu.V. On the least prime in an arithmetic progression I. The basic theorem (in Russian). Mat. Sbornik, 15 (57), 1944, 139–178.

    MathSciNet  Google Scholar 

  27. BRAUER, A. On the exact number of primes below a given limit. Amer. Math. Monthly, 9, 1946, 521–523.

    MathSciNet  Google Scholar 

  28. KHINCHIN, A.Ya. Three Pearls of Number Theory. Original Russian edition in OGIZ, Moscow, 1947. Translation into English published by Graylock Press, Baltimore, 1952.

    Google Scholar 

  29. RÉNYI, A. On the representation of even numbers as the sum of a prime and an almost prime. Dokl. Akad. Nauk SSSR, 56, 1947, 455–458.

    MATH  Google Scholar 

  30. CLEMENT, P.A. Congruences for sets of primes. Amer. Math. Monthly, 56, 1949, 23–25.

    MathSciNet  MATH  Google Scholar 

  31. ERDÖS, P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A., 35, 1949, 374–384.

    MathSciNet  MATH  Google Scholar 

  32. MOSER, L. A theorem on the distribution of primes. Amer. Math. Monthly, 56, 1949, 624–625.

    MATH  Google Scholar 

  33. RICHERT, H.E. Über Zerfällungen in ungleiche Primzahlen. Math. Zeits., 52, 1949, 342–343.

    MathSciNet  MATH  Google Scholar 

  34. SELBERG, A. An elementary proof of the prime number theorem. Annals of Math., 50, 1949, 305–313.

    MathSciNet  MATH  Google Scholar 

  35. SELBERG, A. An elementary proof of Dirichlet’s theorem about primes in an arithmetic progression. Annals of Math., 50, 1949, 297–304.

    MathSciNet  MATH  Google Scholar 

  36. SELBERG, A. An elementary proof of the prime number theorem for arithmetic progressions. Can. J. Math., 2, 1950, 66–78.

    MathSciNet  MATH  Google Scholar 

  37. ERDÖS, P. On almost primes. Amer. Math. Monthly, 57, 1950, 404–407.

    MathSciNet  MATH  Google Scholar 

  38. HASSE, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin, 1950.

    MATH  Google Scholar 

  39. SELBERG, A. The general sieve method and its place in prime number theory. Proc. Int. Congr. Math., Cambridge, 1950.

    Google Scholar 

  40. TITCHMARSH, E.C. The Theory of the Riemann Zeta Function. Clarendon Press, Oxford, 1951.

    MATH  Google Scholar 

  41. ERDOS, P. On pseudo-primes and Carmichael numbers. Publ. Math. Debrecen, 4, 1956, 201–206.

    MathSciNet  Google Scholar 

  42. LEECH, J. Note on the distribution of prime numbers. J. London Math. Soc., 32, 1957, 56–58.

    MathSciNet  MATH  Google Scholar 

  43. SCHINZEL, A. & SIERPINSKI, W. Sur certaines hypothèses concernant les nombres premiers. Acta Arithm., 4, 1958, 185–208; Erratum, 5, 1959, p. 259.

    MathSciNet  Google Scholar 

  44. SCHINZEL, A. Démonstration d’une conséquence de l’hypothèse de Goldbach. Compositio Math., 14, 1959, 74–76.

    MathSciNet  Google Scholar 

  45. WRENCH, J.W. Evaluation of Artin’s constant and the twin-prime constant. Math. Comp., 15, 1961, 396–398.

    MathSciNet  MATH  Google Scholar 

  46. ROSSER, J.B. & SCHOENFELD, L. Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 1962, 64–94.

    MathSciNet  MATH  Google Scholar 

  47. AYOUB, R.G. AnIntroduction to the Theory of Numbers. Amer. Math. Soc., Providence, R.I., 1963.

    Google Scholar 

  48. KANOLD, H.J. Elementare Betrachtungen zur Primzahltheorie. Arch. Math., 14, 1963, 147–151.

    MathSciNet  MATH  Google Scholar 

  49. ROTKIEWICZ, A. Sur les nombres pseudo-premiers de la formeax + b. C.R. Acad. Sci. Paris, 257, 1963, 2601–2604.

    MathSciNet  MATH  Google Scholar 

  50. WALFISZ, A.Z. Weylsche Exponentialsummen in der neueren Zahfentheorie. VEB Deutscher Verlag d. Wiss., Berlin, 1963.

    Google Scholar 

  51. GELFOND, A.O. & LINNIK, Yu.V. Elementary Methods in Analytic Number Theory. Translated by A. Feinstein, revised and edited by L.J. Mordell. Rand McNally, Chicago, 1965.

    Google Scholar 

  52. PAN, C.D. On the least prime in an arithmetic progression. Sci. Record (N.S.), 1, 1957, 311–313.

    MathSciNet  MATH  Google Scholar 

  53. ROTKIEWICZ, A. Les intervalles contenant les nombres pseudo premiers. Rend. Circ. Mat. Palermo (2), 14, 1965, 278–280.

    MathSciNet  MATH  Google Scholar 

  54. STEIN, M.L.& STEIN, P.R. New experimental results on the Goldbach conjecture. M.th. Mag., 38, 1965, 72–80.

    Google Scholar 

  55. STEIN, M.L. & STEIN, P.R. Experimental results on additive 2-bases. Math. Comp., 19, 1965, 427–434.

    MATH  Google Scholar 

  56. BOMBIERI, E. & DAVENPORT, H. Small differences between prime numbers. Proc. Roy. Soc., A, 293, 1966, 1–18.

    MathSciNet  MATH  Google Scholar 

  57. LANDER, L.J. & PARKIN, T.R. Consecutive primes in arithmetic progression. Math. Comp., 21, 1967, p. 489.

    MATH  Google Scholar 

  58. ROTKIEWICZ, A. On the pseudo-primes of the formax + b. Proc. Cambridge Phil. Soc., 63, 1967, 389–392.

    MathSciNet  MATH  Google Scholar 

  59. SZYMICZEK, K. On pseudo-primes which are products of distinct primes. Amer. Math. Monthly, 74, 1967, 35–37.

    MathSciNet  MATH  Google Scholar 

  60. MONTGOMERY, H.L. Zeros of L-functions. Invent. Math., 8, 1969, 346–354.

    MATH  Google Scholar 

  61. ROSSER, J.B., YOHE, J.M. & SCHOENFELD, L. Rigorous computation of the zeros of the Riemann zeta-function (with discussion). Inform. Processing 68 (Proc. IFIP Congress, Edinburgh, 1968 ), Vol. I, 70–76. North-Holland, Amsterdam, 1969.

    Google Scholar 

  62. TITCHMARSH, E.C. The Theory of the Riemann Zeta Function. Clarendon Press, Oxford, 1951.

    MATH  Google Scholar 

  63. HUXLEY, M.N. On the difference between consecutive primes. Invent. Math., 15, 1972, 164–170.

    MathSciNet  MATH  Google Scholar 

  64. HUXLEY, M.N. The Distribution of Prime Numbers. Oxford Univ. Press, Oxford, 1972.

    Google Scholar 

  65. ROTKIEWICZ, A. On a problem of W. Sierpinski. Elem. d. Math., 27, 1972, 83–85.

    MathSciNet  MATH  Google Scholar 

  66. CHEN, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II. Sci. Sinica, 16, 1973, 157–176;

    Google Scholar 

  67. CHEN, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II. Sci. Sinica, 21, 1978, 421–430.

    Google Scholar 

  68. MONTGOMERY, H.L. The pair correlation of zeros of the zeta function. Analytic Number Theory (Proc. Symp. Pure Math., Vol. XXIV, St. Louis, 1972 ), 181–193. Amer. Math. Soc., Providence, R.I., 1973.

    Google Scholar 

  69. AYPUB, R.B. Euler and the zeta-function. Amer. Math. Monthly, 81, 1974, 1067–1086.

    Google Scholar 

  70. EDWARDS, H.M. Riemann’s Zeta Function. Academic Press, New York, 1974.

    MATH  Google Scholar 

  71. HALBERSTAM, H. & RICHERT, H.E. Sieve Methods. Academic Press, New York, 1974.

    MATH  Google Scholar 

  72. LEVINSON, N. More than one third of zeros of Riemann’s zeta function are ona = 1/2. Adv. in Math., 13, 1984, 383–436.

    MathSciNet  Google Scholar 

  73. MAKOWSKI, A. On a problem of Rotkiewicz on pseudoprimes. Elem. d. Math., 29, 1974, p. 13.

    Google Scholar 

  74. MONTGOMERY, H.L. & VAUGHAN, R.C. The exceptional set in Goldbach’s problem. Acta Arithm., 27, 1975, 353–370.

    MathSciNet  MATH  Google Scholar 

  75. ROSS, P.M. On Chen’s theorem that each large even number has the formp i + p2 or pi + p2p3. J. London Math. Soc., (2), 10, 1975, 500–506.

    MathSciNet  MATH  Google Scholar 

  76. ROSSER, J.B. & SCHOENFELD, L. Sharper bounds for Chebyshev functions0(x) and1(x). Math. Comp., 29, 1975, 243–269.

    MathSciNet  MATH  Google Scholar 

  77. APOSTOL, T.M. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  78. BRENT, R.P. Tables concerning irregularities in the distribution of primes and twin primes to 1011. Math. Comp., 30, 1976, p. 379.

    MathSciNet  Google Scholar 

  79. HUDSON, R.H. A formula for the exact number of primes below a given bound in any arithmetic progression. Bull. Austral. Math. Soc., 16, 1977, 67–73.

    MathSciNet  MATH  Google Scholar 

  80. HUDSON, R.H. & BRAUER, A. On the exact number of primes in the arithmetic progressions 4n + 1 and 6n + 1. Journal f. d. reine u. angew. Math., 291, 1977, 23–29.

    MathSciNet  MATH  Google Scholar 

  81. LANGEVIN, M. Méthodes élémentaires en vue du théorème de Sylvester. Sém. Delange-Pisot-Poitou, 17e année, 1975/76, fasc. 1, exp. No. G12, 9 pages, Paris, 1977.

    Google Scholar 

  82. WEINTRAUB, S. Seventeen primes in arithmetic progression. Math. Comp., 31, 1977, p. 1030.

    MathSciNet  MATH  Google Scholar 

  83. BAYS, C.& HUDSON, R.H. On the fluctuations of Littlewood for primes of the form 4n + 1. Math. Comp., 32, 141, 281–286.

    Google Scholar 

  84. HEATH-BROWN, D.R. Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambridge Phil. Soc., 83, 1978, 357–375.

    MathSciNet  MATH  Google Scholar 

  85. HEATH-BROWN, D.R. & IWANIEC, H. On the difference between consecutive powers. Bull. Amer. Math. Soc., N.S., 1, 1979, 758–760.

    MathSciNet  MATH  Google Scholar 

  86. IWANIEC, H. & JUTILA, M. Primes in short intervals. Arkiv f. Mat., 17, 1979, 167–176.

    MathSciNet  MATH  Google Scholar 

  87. POMERANCE, C. The prime number graph. Math. Comp., 33, 1979, 399–408.

    MathSciNet  MATH  Google Scholar 

  88. WAGSTAFF, Jr., S.S. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33, 1979, 1073–1080.

    MathSciNet  MATH  Google Scholar 

  89. CHEN, J.R. & PAN, C.D. The exceptional set of Goldbach numbers, I. Sci. Sinica, 23, 1980, 416–430.

    MathSciNet  Google Scholar 

  90. LIGHT, W.A., FORREST, J., HAMMOND, N., & ROE, S. A note on Goldbach’s conjecture. BIT, 20, 1980, p. 525.

    MathSciNet  MATH  Google Scholar 

  91. NEWMAN, D.J. Simple analytic proof of the prime number theorem. Amer. Math. Monthly, 87, 1980, 693–696.

    MATH  Google Scholar 

  92. PINTZ, J. On Legendre’s prime number formula. Amer. Math. Monthly, 87, 1980, 733–735.

    MathSciNet  MATH  Google Scholar 

  93. POMERANCE, C., SELFRIDGE, J.L., & WAGSTAFF, Jr., S.S. The pseudoprimes to 25 · 109. Math. Comp., 35, 1980, 1003–1026.

    MathSciNet  MATH  Google Scholar 

  94. VAN DER POORTEN, A.J. & ROTKIEWICZ, A. On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc., A, 29, 1980, 316–321.

    MATH  Google Scholar 

  95. HEATH-BROWN, D.R. Three primes and an almost prime in arithmetic progression. J. London Math. Soc., (2), 23, 1981, 396–414.

    MathSciNet  MATH  Google Scholar 

  96. POMERANCE, C. On the distribution of pseudo-primes. Math. Comp., 37, 1981, 587–593.

    MathSciNet  MATH  Google Scholar 

  97. POMERANCE, C. A new lower bound for the pseudoprimes counting function. Illinois J. Math., 26, 1982, 4–9.

    MathSciNet  MATH  Google Scholar 

  98. WEINTRAUB, S. A prime gap of 682 and a prime arith metic sequence. BIT, 22, 1982, p. 538.

    MathSciNet  MATH  Google Scholar 

  99. CHEN, J.R. The exceptional value of Goldbach numbers, II. Sci. Sinica, Ser. A, 26, 1983, 714–731.

    MathSciNet  MATH  Google Scholar 

  100. POWELL, B. Problem 6429 (Difference between consecutive primes). Amer. Math. Monthly, 90, 1983, p. 338.

    Google Scholar 

  101. RIESEL, H. & VAUGHAN, R.C. On sums of primes. Arkiv f. Mat., 21, 1983, 45–74.

    MathSciNet  MATH  Google Scholar 

  102. DAVIES, R.O. Solution of problem 6429. Amer. Math. Monthly, 91, 1984, p. 64.

    Google Scholar 

  103. IWANIEC, H. & PINTZ, J. Primes in short intervals. Monatsh. Math., 98, 1984, 115–143.

    MathSciNet  MATH  Google Scholar 

  104. SCHROEDER, M.R. Number Theory in Science and Communication. Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  105. WANG, Y. Goldbach Conjecture. World Scientific Publ., Singapore, 1984.

    MATH  Google Scholar 

  106. IVIC, A. The Riemann Zeta-Function. J. Wiley & Sons, New York, 1985.

    Google Scholar 

  107. LAGARIAS, J.C., MILLER, V.S. & ODLYZKO, A.M. Computing7r(x): The Meissel-Lehmer method. Math. Comp., 44, 1985, 537–560.

    MathSciNet  MATH  Google Scholar 

  108. LOU, S. & YAO, Q. The upper bound of the difference between consecutive primes. Kexue Tongbao, 8, 1985, 128–129.

    Google Scholar 

  109. POWEL, B. Problem 1207 (A generalized weakened Goldbach theorem). Math. Mag., 58, 1985, p. 46;

    MathSciNet  Google Scholar 

  110. POWEL, B. Problem 1207 (A generalized weakened Goldbach theorem). Math. Mag., 59 1986, 48–49.

    Google Scholar 

  111. PRITCHARD, P.A. Long arithmetic progressions of primes; some old, some new. Math. Comp., 45, 1985, 263–267.

    MathSciNet  MATH  Google Scholar 

  112. BOMBIERI, E., FRIEDLANDER, J.B. & IWANIEC, H. Primes in arithmetic progression to large moduli, I. Acta Math., 156, 1986, 203–251.

    MathSciNet  MATH  Google Scholar 

  113. FINN, M.V. & FROHLIGER, J.A. Solution of problem 1207. Math. Mag., 59, 1986, 48–49.

    MathSciNet  Google Scholar 

  114. MOZZOCHI, C.J. On the difference between consecutive primes. J. Nb. Th., 24, 1986, 181–187.

    MathSciNet  Google Scholar 

  115. TE RIELE, H.J.J. On the sign of the difference7r(x)–£i(x). Report NM-R8609, Centre for Math. and Comp. Science, Amsterdam, 1986; Math. Comp., 48, 1987, 323–328.

    MATH  Google Scholar 

  116. VAN DE LUNE, J., TE RIELE, H.J.J.,& WINTER, D.T. On the zeros of the Riemann zeta function in the critical strip, IV. Math. Comp., 47, 1986, 667–681.

    Google Scholar 

  117. WAGON, S. Where are the zeros of zeta of s ? Math. Intelligencer, 8, 4, 1986, 57–62.

    MathSciNet  MATH  Google Scholar 

  118. ERDÖS, P., KISS, P. & SÂRKÖZY, A. A lower bound for the counting function of Lucas pseudoprimes. Math. Comp., 51, 1988, 315–323.

    MathSciNet  MATH  Google Scholar 

  119. PATTERSON, S.J. Introduction to the Theory of the Riemann Zeta-function. Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  120. CONREY, J.B. At least two fifths of the zeros of the Riemann zeta function are on the critical line. Bull. Amer. Math. Soc., 20, 1989, 79–81.

    MathSciNet  MATH  Google Scholar 

  121. YOUNG, J. & POTLER, A. First occurrence of prime gaps. Math. Comp., 52, 1989, 221–224.

    MathSciNet  MATH  Google Scholar 

  122. JAESCHKE, G. The Carmichael numbers to 1012. Math. Comp., 55, 1990, 383–389.

    MathSciNet  MATH  Google Scholar 

  123. PARADY, B.K., SMITH, J.F. & ZARANTONELLO, S. Largest known twin primes. Math. Comp., 55, 1990, 381–382.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Paulo Ribenboim

About this chapter

Cite this chapter

Ribenboim, P. (1991). How Are the Prime Numbers Distributed?. In: The Little Book of Big Primes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4330-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4330-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97508-5

  • Online ISBN: 978-1-4757-4330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics