How Many Prime Numbers Are There?

  • Paulo Ribenboim

Abstract

The answer is given by the fundamental theorem:

There exist infinitely many prime numbers.

Keywords

Prime Number Prime Ideal Arithmetic Progression Infinite Sequence Algebraic Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1878.
    KUMMER, E.E. Neuer elementarer Beweis, dass die Anzahl aller Primzahlen eine unendliche ist. Monatsber. Akad. d. Wiss., Berlin, 1878/9, 777–778.Google Scholar
  2. 1890.
    STIELTJES, T.J. Sur la théorie des nombres. Etude bibliographique. An. Fac. Sci. Toulouse, 4, 1890, 1–103.Google Scholar
  3. 1924.
    PóLYA, G. & SZEGÖ, G. Aufgaben und Lehrsätze aus der Analysis, 2 vols. Springer-Verlag, Berlin, 1924 (4th edition, 1970 ).MATHCrossRefGoogle Scholar
  4. 1947.
    BELLMAN, R. A note on relatively prime sequences. Bull. Amer. Math. Soc., 53, 1947, 778–779.MATHCrossRefGoogle Scholar
  5. 1955.
    FÜRSTENBERG, H. On the infinitude of primes. Amer. Math. Monthly, 62, 1955, p. 353.CrossRefGoogle Scholar
  6. 1959.
    GOLOMB, S.W. A connected topology for the integers. Amer. Math. Monthly, 66, 1959, 663–665.MathSciNetMATHCrossRefGoogle Scholar
  7. 1963.
    MULLIN, A.A. Recursive function theory (A modern look on an Euclidean idea). Bull. Amer. Math. Soc., 69, 1963, p. 737.MathSciNetCrossRefGoogle Scholar
  8. 1964.
    EDWARDS, A.W.F. Infinite coprime sequences. Math. Gazette, 48, 1964, 416–422.MATHCrossRefGoogle Scholar
  9. 1967.
    SAMUEL, P. Théorie Algébrique des Nombres. Hermann, Paris, 1967. English translation published by Houghton-Mifflin, Boston, 1970.Google Scholar
  10. 1968.
    COX, C.D. & VAN DER POORTEN, A.J. On a sequence of prime numbers. J. Austr. Math. Soc., 1968, 8, 571–574.MATHCrossRefGoogle Scholar
  11. 1972.
    BORNING, A. Some results fork!±1 and 2·3·5... p+ 1. Math. Comp., 26, 1972, 567–570.MathSciNetMATHGoogle Scholar
  12. 1980.
    TEMPLER, M. On the primality ofk!+1 and 2·3... p+1. Math. Comp., 34, 1980, 303–304.MathSciNetMATHGoogle Scholar
  13. 1980.
    WASHINGTON, L.C. The infinitude of primes via commutative algebra. Unpublished manuscript.Google Scholar
  14. 1982.
    BUHLER, J.P., CRANDALL, R.E. & PENK, M.A. Primes of the form n! + 1 and 2·3·5... p + 1. Math. of Comp., 38, 1982, 639–643.MathSciNetMATHGoogle Scholar
  15. 1985.
    ODONI, R.W.K. On the prime divisors of the sequence wn+i = 1 + wiw2... w n. J. London Math. Soc., (2), 32, 1985, 1–11.MathSciNetMATHCrossRefGoogle Scholar
  16. 1987.
    DUBNER, H. Factorial and primorial primes. J. Recr. Math., 19, 1987, 197–203.MATHGoogle Scholar

Copyright information

© Paulo Ribenboim 1991

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations