Shock Waves and Extreme States of Matter

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


Through the use of strong shock waves, extreme states of matter can be made available for laboratory experiments. Within the narrow zone of the shock discontinuity, the kinetic energy of the flow is transformed into energy of compression and irreversible heating of the material. Shock-wave techniques provide access to practically unlimited pressures, although the time scale for measurements is very small, being typically within the range from 10-9s to ~10-6s. The measurements are based on application of fundamental conservation laws that enable one to reduce determination of the thermodynamic parameters of state (pressure, density, and specific energy) to measurement of only two kinematic parameters, i.e., in fact, to the measurement of time intervals during which a shock wave or flyer plate moves through a given distance.


Shock Wave Shock Compression Flyer Plate Ideal Plasma Shock Compressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekseev, V.A., V.E. Fortov, and I. Iakubov, (1983). “Physical properties of high pressure plasmas,”Sov. Phys.-Usp. 26(2), pp. 99–115 [trans. from Usp. Fiz. Nauk 139(2), p. 193(1983)].ADSCrossRefGoogle Scholar
  2. Al’tshuler, L.V. (1965). “Application of shock waves in physics of high pressures,” Sov. Phys.-Usp. 26(2), pp.52–91. [trans. from Usp. Fiz. Nauk 85(2), pp. 197–258 (1965).]ADSCrossRefGoogle Scholar
  3. Al’tshuler, L.V., V.E. Fortov, A.I. Funtikov, R.F. Trunin, and V.D. Urlin (1999). “Development of high-pressure dynamical measurement techniques in Russia,” Usp. Fiz. Nauk 169(3), pp. 323–344 (1999). (inRussian)CrossRefGoogle Scholar
  4. Avrorin, E.N., Vodolaga, B.K., Simonenko, B.A., and Fortov, V.E. (1993). “High Intensity Shock Waves and the Extreme States of Matter,” Phys.Usp. 36(5), pp. 337–364 [trans. from Usp. Fiz. Nauk 163(5), pp. 1–34 (1993)].ADSCrossRefGoogle Scholar
  5. Bespalov, V., Gryaznov, V.K., and Fortov, V.E. (1979). “Radiation of shock-compressed argon plasma of high pressure,” Sov. Phys.-JETP 49(1), pp. 71–74 [trans. from Zh. Eksp. Teor.Fiz. 76(1), pp. 140–147(1979)].ADSGoogle Scholar
  6. Bushman, A.V., Glushak, B.L., V.K. Gryaznov, M.V. Zhernokletov, I.K. Krasyuk, P.P. Pashinin, A.M. Prokhorov, V.Ya. Ternovoi, A.S. Filimonov, and V.E. Fortov (1986). “Shock compression and adiabatic decompression of a dense bismuth plasma at extreme thermal-energy densities,” JETP Lett. 44(8), pp. 480–483 [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 44(8), pp. 375–377 (1986)].ADSGoogle Scholar
  7. Ebeling, V., A. Forster, V.E. Fortov, V.K. Gryaznov, and A.Ya. Polishchuk, (1991). Thermophysical Properties of Hot Dense Plasmas, B.G. Teubner Verlag, Leipzig.Google Scholar
  8. Fortov, V.E. (1982). “Dynamic methods in plasma physics,” Sov. Phys. — Usp. 25(11), pp. 781–809 [trans. from Usp. Fiz. Nauk 138(3), pp. 361–412 (1982)]. Fortov, V.E., V. Bespalov, M.I. Kulish, and S. Kuz (1990). “Experimental study of optical properties of strongly coupled plasmas,” in: Strongly Coupled Plasma Physics (ed. S. Ichimaru), Elsevier, pp. 571–578.ADSCrossRefGoogle Scholar
  9. Fortov, V.E., A.V. Bushman, A.C. Filimonov, S.V. Kvitov, Ml Kulish, M.E. Lebedev, A.Ya. Polischuk, and V.Ya. Ternovoi (1992). “Optical properties of dense plasma in shock and rarefaction waves,” in: Shock Compression of Condensed Matter1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker) North-Holland, Amsterdam, pp. 745–748Google Scholar
  10. Fortov, V.E., and I.T. Iakubov (1990). Physics of Nonideal Plasma. Hemisphere, N.Y. Fortov, V.E., and IT. Iakubov (1999). Physics of Nonideal Plasmas. World. Sci. Publ., London.Google Scholar
  11. Fortov, V.E., and Yu. Krasnikov (1971). “Development of thermodynamically complete equation of state for non-ideal plasma using the dynamic experiment data,” Sov. Phys.-JETP 32, pp. 897–902 [trans. from Zh. Eksp. Teor. Fiz. 59, pp. 1645–1656 (1970)].ADSGoogle Scholar
  12. Fortov, V.E., and I.V. Lomonosov (1997). “Thermodynamics of extreme states of a matter,” J. Pure Appl. Chem. 69(4), p. 893.CrossRefGoogle Scholar
  13. Fortov, V.E., V.I. Postnov, I.V. Lomonosov, V.V. Yakushev, KI. Kagan, A.N. Kurjanchic, and T.N. Yakusheva, (2001). “The metal-isolator-metal transition at multiple shock loading of lithium up to 2.1 Mbar.”Google Scholar
  14. Fortov, V.E., V.V. Yakushev, K.L. Kagan, I.V. Lomonosov, V.I. Postnov, T.N. Yakusheva, and A.N. Kurjanchic (2002). “Abnormal electrical conductivity of lithium at high dynamic pressure,” in: Shock Compression of Condensed Matter2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Hone) American Institute of Physics, New York, pp. 237–240.Google Scholar
  15. Fortov, V.E., V.Ya. Ternovoi, S.V. Kvitov, V.B. Mntsev, D.N. Nikolaev, A.A. Pyalling, and A.S. Filimonov (1999a). “Electrical conductivity of nonideal hydrogen plasma at megabar dynamic pressures,” JETP Lett. 69(12), pp. 926–931 [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 69(12), pp. 874–878 (1999)].ADSCrossRefGoogle Scholar
  16. Fortov, V.E., V.V. Yakushev, K.L. Kagan, I.V. Lomonosov, V.I. Postnov, T.I. Yakusheva (1999b). “Anomalous electrical conductivity of lithium under quasi-isentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase?” JETP Lett. 70(9), pp. 628–632 [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 70(9), pp. 620–624 (1999)].ADSCrossRefGoogle Scholar
  17. Glushak, B.L., Zakharov, A.P., M.V. Zhernokletov, V.Ya. Ternovi, and A.S. Filimonov (1989). “Experimental investigation of the thermodynamics of dense plasma formed from metals at high energy densities,” Sov. Phys.-JETP 69(4), p. 739. [trans. from Zh. Eksp. Teor. Fiz. 96, pp. 1301–1308 (1988).]Google Scholar
  18. Gryaznov, V.K., I.L. Iosilevski, and V.E. Fortov (1982). “Thermodynamics of a highly compressed plasma in the megabar range,” Sov. Tech. Phys. Lett. 8(11), pp. 592–593 [trans. from Pis’ma Zh. Tekk. Fiz. 8(11), pp. 1378–1381 (1982)].Google Scholar
  19. Gryaznov, V.K., M.A. Zhernokletov, V.N. Zubarev, I.L. Iosilevski, and V.E. Fortov (1980). “Thermodynamic properties of nonideal plasma of argon and xenon,” Sov. Phys.-JETP 51(2), pp. 288–300. [trans. from Zh. Eksp. Teor. Fiz 78(2), pp. 573–585 (1980).]ADSGoogle Scholar
  20. Gryaznov, V.K., V.E. Fortov, M.A. Zhernokletov, R.F. Trunin, L.I. Trusov, and I.L. Iosilevskii, (1998). “Shock compression and thermodynamics of highly nonideal metallic plasma,” J. Exper. Theor. Phys. 87(4), pp. 678–690 [trans. from Zh. Eksp. Teor. Fiz. 114(4), pp. 1242–1265 (1998)].ADSCrossRefGoogle Scholar
  21. Ivanov, Yu.V., V.B. Mntsev, V.E. Fortov, and A.N. Dremin, (1976). “Electrical conductivity of nonideal plasma,” Sov. Phys.-JETP 44(1), pp. 112–116 [trans. from Zh. Eksp. Teor. Fiz. 71(7), pp. 216–224 (1976)].ADSGoogle Scholar
  22. Kormer, S.B., A.I. Funtikov, V.D. Urlin, and A.N. Kolesnikova (1962). “Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures,” Sov. Phys.-JETP 15, pp. 477–488 (1962). [trans. from Zh. Eksp. Teor. Fiz. 42(3), pp. 686–702 (1962).]Google Scholar
  23. Kvitov, S., A.V. Bushman, M.I. Kulish, I.V. Lomonosov, A.Ya. Polishchuk, A.Yu. Semenov, V.Ya. Ternovi, A.S. Filimonov, and V.E. Fortov, (1991). “Measurements of radiative properties of dense bismuth plasma in adiabatic waves,” JETP Lett. 53(7), pp. 353–357. [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 53(7), pp. 338–342 (1991).]ADSGoogle Scholar
  24. Kulish, M., V. Gryaznov, A. Mezhiba, V. Mntzev, V. Fortov, et al. (1996). “Nonideal plasma of Ar and Xe in shock waves,” in: Physics of Strongly Coupled Plasmas (eds W.D. Kraeft and M. Schlanges), World Scientific, Singapore, pp. 337–343Google Scholar
  25. Landau, L.D., and Ya.B. Zel’dovich (1944). Zh. Eksp. Teor. Fiz. 14, p. 32. (in Russian)Google Scholar
  26. Lomakin, B. and Fortov, V.E. (1972). “Equation of state of nonideal cesium plasma,” Zhurn. Exp. Teor. Fiz., 63(7), p. 92 (in Russian).Google Scholar
  27. Lomakin, B. and Fortov, V.E. (1975). “Thermodynamics of nonideal cesium plasma,” Zhurn. Exp. Teor. Fiz., 69(11), p. 1624 (in Russian)ADSGoogle Scholar
  28. Lomakin, B., and V.E. Fortov (1973). “Equation of state of nonideal cesium plasma,” Sov. Phys.-JETP 36(1), pp. 48–53. [trans. from Zh. Eksp. Teor. Fiz. 63(1), pp. 92–103(1972).]ADSGoogle Scholar
  29. Mintsev, V.B., and V.E. Fortov (1979). “Electrical conductivity of xenon under supercritical conditions,” JET? Lett. 30(7), pp. 375–378. [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 30(7), pp. 401–404 (1979).]ADSGoogle Scholar
  30. Mintsev, V.B., and V.E. Fortov (1982). “Explosive-driven shock tubes”, High Temp. 20(3), pp. 623–645 [trans. from Teplofiz. Vys. Temp. 20(3) pp. 745–764 (1982)].Google Scholar
  31. Nabatov, S.S., A.N. Dremin, V.N. Postnov, and V.V. Yakushev (1979). “Measurements of the electrical conductivity of sulfur under super-high dynamic pressures,” JETP Lett. 29(7), pp. 369–372. [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 29(7), pp. 407–410(1979).]ADSGoogle Scholar
  32. Neaton, J.B., and N.W. Ashcroft (1999). “Pairing in dense lithium,” Nature, 400, pp. 141–144.ADSCrossRefGoogle Scholar
  33. Postnov, V.I., D.N. Nikolaev, V.Ja. Temovoi, A.S. Filimonov, V.E. Fortov, and V.V. Yakushev, (1998). “The Opportunity of the use of sapphire at multiple shock-wave compression of hydrogen,” in: Shock Compression of Condensed Matter1997 (eds. S.C. Schmidt, D.P. Dandekar, J.W. Forbes) American institute of physics, New York, pp. 769–772.Google Scholar
  34. Shaner, J.W., and G.R. Gathers (1979). in: High Pressure Science and Technology (eds. K.D. Timerhouse and M.S. Barber) Plenum Press, New York, p. 847.Google Scholar
  35. Vladimirov, A.S., N.P. Voloshin, V.N. Nogin, A.V. Petrov, and V.A. Simonenko, (1984). “Shock compressibility of aluminum at p< 1 Gbar,” JETP Lett. 39(2), pp. 82–84 [trans. fiom Pis’ma Zh. Eksp. Teor. Fiz. 39(2), pp. 69–72, (1984)].ADSGoogle Scholar
  36. Vladimirov, A.S., Voloshin, N.P., Simonenko, V.A. et al. (1984). “Shock compressibility of aluminum at p<1 Gbar,” ZhETF Pizma, 39(2), p. 69 (in Russian).Google Scholar
  37. Voltaire, Micromegas, Romans, Vol.1, Paris, 1887Google Scholar
  38. Weir, S.T., A.C. Mitchell, and W.J. Nellis (1996). “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, p. 1860ADSCrossRefGoogle Scholar
  39. Wigner, E. (1938). Trans. Faraday Soc. 34, p. 678CrossRefGoogle Scholar
  40. Zel’dovich, Ya. B., and Yu.P. Raizer (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. I (1966) and Vol. II (1967), Academic Press, New York. Reprinted in a single volume by Dover Publications, Mineola, New York (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations