Polymorphic Transformations and Phase Transitions in Shock-Compressed Solids

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


It is known that many solids can exist in different crystal structures depending on the pressure and temperature. The change in the crystal structure is often accompanied by a change in compressibility which, in turn, affects the evolution of compression and rarefaction waves. This circumstance opens a way to study thermodynamic parameters and kinetics of polymorphic transformations. Shockwave loading causes irreversible heating of the material which may result in its melting upon compression or during unloading from shock-compressed states. At higher peak pressures the irreversible part of the energy of shock-wave compression becomes sufficient to vaporize a significant fraction of the material during unloading. Melting and vaporization of shocked solids occur, for example, as a result of hypervelocity collisions of meteorites with space apparatus. This makes it important to study these phenomena.


Shock Wave Boron Nitride Compression Wave Shock Compression Wave Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al’tshuler, L.V. (1978). “Phase transitions in shock waves (Review),” J. Appl. Mech. Tech. Phys. 19(4), pp. 496–505. [trans. from Zh. Prikl. Mekh. Tekh. Fiz. (4), pp. 93–103(1978).]ADSCrossRefGoogle Scholar
  2. Anan’in, A.V., A.N. Dremin, and G.I. Kanel (1973). “Structure of shock waves and rarefaction waves in iron,” Comb. Expl. Shock Waves 9(3), pp. 381–385. [trans. from Fiz. Goreniya Vzryva 9(3), pp. 437–443 (1973).]CrossRefGoogle Scholar
  3. Anan’in, A.V., A.N. Dremin, and G.I. Kanel (1981). “Polymorphous transformations of iron in shock wave.” Comb. Expl. Shock Waves 17(3), pp. 320–326. [trans. from Fiz. Goreniya Vzryva 17(3), pp. 93–102 (1981).]CrossRefGoogle Scholar
  4. Anan’in, A.V., A.N. Dremin, and G.I. Kanel, and S.V. Pershin (1978). “Investigation of the structure of shock waves in boron nitride and graphite in the region of polymorphous transformation,” J. Appl. Mech. Tech. Phys. 19(3), pp. 372–376 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 19(3), pp. 112–116 (1978)].ADSCrossRefGoogle Scholar
  5. Anrdiot, P., P. Chapron, V. Lambert, and F. Olive (1984). “Influence of melting on shocked free surface behavior using Doppler laser interferometry and X-ray densitometry,” in: Shock Waves in Condensed Matter—1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, pp. 277–280.Google Scholar
  6. Asay, J.R., L.P. Mix, and F.C. Perry (1976). “Ejection of material from shocked surface,” Appl. Phys. Lett. 29, pp. 284–287.ADSCrossRefGoogle Scholar
  7. Balchan, A., and H.G. Drickamer (1961). “High-pressure electrical resistance cell and calibration points above 100 kbar,” Rev. Sci. Instr. 32(3), pp. 308–314.ADSCrossRefGoogle Scholar
  8. Bancroft, D., E.L. Peterson, and S. Minshall (1956). “Polymorphism of iron at high pressure,” J. Appl. Phys. 27(3), pp. 291–298.ADSCrossRefGoogle Scholar
  9. Barker, L.M. and R.E. Hollenbach (1974). “Shock wave study of phase transition in iron,” J. Appl. Phys. 45(11), pp. 4872–4887.ADSCrossRefGoogle Scholar
  10. Baumung, K., H. J. Bluhm, B. Goel, P. Hoppe, H.U. Karow, D. Rush, V.E. Fortov, G.I. Kanel, S.V. Razorenov, A.V. Utkin, and O.Yu. Vorobjev (1996). “Shock-Wave Physics Experiments with High-Power Proton Beams,” Laser and Particle Beams 14(2), pp. 181–210.ADSCrossRefGoogle Scholar
  11. Baumung, K., G.I. Kanel, S.V. Razorenov, D. Rush, J. Singer, and A.V. Utkin (1997). “Shock-melting pressures from non-planar impacts,” Int. J. Impact Eng. 20(1–5), pp. 101–110.CrossRefGoogle Scholar
  12. Belyakov, L.V., V.P. Valitski, N.A. Zlatin, and S.M. Mochalov (1967). “On melting of lead in shock wave,” Sov. Phys.-Dokl. 11(9), pp. 808–810. [trans. from Dokl. Akad. Nauk SSSR 170, pp. 540–543 (1966).]ADSGoogle Scholar
  13. Betholf, L.D., L.D. Buxton, B.J. Thome, et al. (1975). “Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement,” J. Appl. Phys. 46(9), p. 3776.ADSCrossRefGoogle Scholar
  14. Bushman, A.V., M.V. Zhernokletov, I.V. Lomonosov, Yu.N. Sutulov, V.E. Fortov, and K.V. Khrishchenko (1993). “Investigations of Plexiglass and Teflon in waves of secondary shock compression and isentropic unloading. The equation of state of polymers at high energy densities,”Phys.-Dokl. 38(4), pp. 165–167 [trans. from Dokl. Akad. Nauk SSSR 329(5), pp. 581–584 (1993)].MathSciNetADSGoogle Scholar
  15. Chapron, P., P. Elias, and B. Laurent (1988). “Experimental determination of the pressure inducing melting in release for shock-loaded metallic samples,” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 171–173.Google Scholar
  16. Duvall, G.E., and R.A. Graham (1977). “Phase transitions under shock wave loading,” Rev. Mod. Phys. 49(3), pp. 523–581.ADSCrossRefGoogle Scholar
  17. Erskine, D.J. and W.J. Nellis (1992). “Shock-induced martensitic transformation of highly oriented graphite to diamond,” J. Appl. Phys. 71(10), p. 4882.ADSCrossRefGoogle Scholar
  18. Giles, P.M., M.H. Longen, and A.R. Marder (1971). “High-pressure martensitic transformation in iron,” J. Appl. Phys. 42(11), pp. 4290–4296.ADSCrossRefGoogle Scholar
  19. Gluzman, V.D., G.I. Kanel, V.F. Loskutov, V.E. Fortov, and I.E. Khorev (1985). “Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading,” Strength of Materials 17(3), pp. 1093–1098. [trans from Problemy Prochnosti, 17(8), pp. 52–57(1985).]CrossRefGoogle Scholar
  20. Gogulya, M.F. (1989). “Shock structure and parameters under dynamic loading of natural graphite in polymorphic transformation domain,” Comb. Expl. Shock Waves 25(1), pp. 87–95 [trans from Fiz. Goreniya Vzryva 25(1), pp. 95–104 (1989)].CrossRefGoogle Scholar
  21. Gray III, G.T. (1990). “Shock recovery experiments: an assessment,” in: Shock Compression of Condensed Matter1989(eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, pp. 407–414.Google Scholar
  22. Hauver, E. (1965). “Shock-induced polarization in plastics, H. Experimental study of plexiglas and polystyrene,” J. Appl. Phys. 36(7), pp. 2113–2118.ADSCrossRefGoogle Scholar
  23. Ivanov, A.G., and Novikov, S.A. (1961). “About the rarefaction shock waves in steel,” Sov. Phys.-JETP 13, pp. 1321–1323 [trans. from Zh. Eksp. Teor. Fiz. 40(6), pp. 1880–1881(1961)].Google Scholar
  24. Jamieson, J.C. (1963), Science 140, p. 72.ADSCrossRefGoogle Scholar
  25. Jamieson, J.C., and A.W. Lawson (1962). “X-ray diffraction studies in the 100-kbar pressure range,” J. Appl. Phys. 33(3), pp. 776–780.ADSCrossRefGoogle Scholar
  26. Johnson, P.C., B.A. Stein, and R.S. Davis (1962). “Temperature dependence of shock-induced phase transformation in iron,” J. Appl. Phys. 33(2), pp. 557–564.ADSCrossRefGoogle Scholar
  27. Kanel, G.I., K. Baumung, D. Rush, J. Singer, S.V. Razorenov, and A.V. Utkin (1998). “Melting of shock-compressed metals in release,” in: Shock Compression of Condensed Matter—1997 (eds S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 155–158.Google Scholar
  28. Kanel, G.I., V.E. Fortov, K.V. Khishchenko, A.V. Utkin, S.V. Razorenov, I.V. Lomonosov, T. Mehlhorn, J.R. Asay, and L.C. Chhabildas (2000). “Thin foil acceleration method for measuring the unloading isentropes of shock-compressed matter,” in: Shock Compression of Condensed Matter1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 1179–1182.Google Scholar
  29. Kanel, G.I., S.V. Razorenov, E.B. Zaretsky, B. Herrman, and L. Meyer (2003). “Thermal “softening” and “hardening” of titanium and titanium alloy at high strain rates of a shock-wave deforming,” Phys. Solid State, 45(4) pp. 656–661.ADSCrossRefGoogle Scholar
  30. Kaufinan, L. (1963). in: Solids under Pressure (eds. W. Paul and D.M. Warschauer) McGraw-Hill, New York.Google Scholar
  31. Kiselev, A.N., and A.A. Falkov (1982). “Phase Transformation in Titanium in Shock Waves,” Fiz. Goreniya Vzryva 18, p. 105 (1982). (in Russian)Google Scholar
  32. Kormer, S.B. (1968). “Optical investigations of properties of shock-compressed condensed dielectrics,” Sov. Phys.-Usp. 11(4) pp. 229–254 (1968) [trans. from Usp. Fiz. Nauk 94(4), pp. 641–687 (1968)].ADSCrossRefGoogle Scholar
  33. Krüger, L., G.I. Kanel, S.V. Razorenov, L. Meyer, and G.S. Bezrouchko (2002). “Yield and strength properties of the Ti-6–22–22S alloy over a wide strain rate and temperature range,” in: Shock Compression of Condensed Matter—2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 1327–1330.Google Scholar
  34. Kutsar, A.R., V.N. German, and G.I. Nasova (1973). “(α →∞)-transformation in titanium and zirconium in shock waves,” Sov. Phys.-Dokl. 131(3), pp. 317–320 [trans. from Dokl. Akad. Nauk SSSR 213(1), pp. 81–84 (1973)].Google Scholar
  35. Kutsar, A.R., M.N. Pavlovsky, and V.V. Komissarov (1982). “The Observation of Two-Wave Configuration of Shock Wave in Titanium.” JETP Lett. 35(3), pp. 108–112 [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 35(3), pp. 91–94 (1982)].ADSGoogle Scholar
  36. Mao, H.K., W.A. Bassett, and T. Takahashi (1967). “Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar,” J. Appl. Phys. 38(1), pp. 272–278.ADSCrossRefGoogle Scholar
  37. McQueen, R.G., S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter (1970). “The equation of state of solids from shock wave studies,” in: High-Velocity Impact Phenomena (ed. R. Kinslow) Academic Press, New York, pp. 293–417 (see also Appendices, pp. 518–568).CrossRefGoogle Scholar
  38. Nahme, H., and M. Hiltl (1995). “Dynamic properties and microstructural behavior of shock-loaded Armco iron at high temperatures,” in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer and M.A. Meyers) Elsevier, New York, pp. 731–738.Google Scholar
  39. Olinger, B., and J.C. Jamieson (1973). High Temp.-High Press. 5, p. 123.Google Scholar
  40. Razorenov, S.V., A.A. Bogach, and G.I. Kanel (1997). “Influence of heat treatment and polymorphous transformation on the dynamic rupture resistance of 40X steel,” Phys. Met Metall 83(1), pp. 100–103 [trans. from Fiz. Metall. Metalloved. 93(1), pp. 147–152(1997)].Google Scholar
  41. Razorenov, S.V., G.I. Kanel, E. Kramshonkov, and K. Baumung (2002). “Shock compression and spalling of cobalt at normal and elevated temperatures,” Comb. Expl. Shock Waves 38(5), pp. 598–601 [trans from Fiz. Goreniya Vzryva 38(5), pp. 119–123(2002)].CrossRefGoogle Scholar
  42. Razorenov, S.V., G.I. Kanel, and A.A. Ovtchinnikov (1981). “Recording of shock waves by manganinin gauges and the pressure of graphite-diamond transformation at elevated temperature,” in: Detonation. Proceedings of the Second All-Union Workshop on Detonation, Inst, of Chem. Physics, Chernogolovka, pp. 70–74. (in Russian).Google Scholar
  43. Razorenov, S.V., A.V. Utkin, G.I. Kanel, V.E. Fortov, A.S. Yarunichev, K. Baumung, and H.U. Karow (1995). “Response of high-purity titanium to high-pressure impulsive loading,”High Press. Res. 13(6), pp. 367–376.ADSCrossRefGoogle Scholar
  44. Remiot, C., J.M. Mexmain, and L. Bonnet (1996). “Precise method to determine points on isentropic release curve on copper,” in: Shock Compression of Condensed Matter—1995 (eds: S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 955–958.Google Scholar
  45. Roundy, D., and M.X. Cohen (2001). “Ideal strength of diamond, Si, and Ge,” Phys. Rev. B 64, pp. 212103–212103.ADSCrossRefGoogle Scholar
  46. Sikka, S.K., Y.K. Vohra, and R. Chidambaram (1982). “Oméga phase in materials,” Prog. Mater. Sci. 27, p. 245–310.CrossRefGoogle Scholar
  47. Sugak, S.G., G.I. Kanel, V.E. Fortov, A.L. Ni, and V.G. Stelmakh (1983). “Numerical modeling of the action of an explosion on an iron slab,” Comb. Expl. Shock Waves 19(2), pp. 239–246 [trans. from Fiz. Goreniya Vzryva 19(2), pp. 121–128 (1983)].CrossRefGoogle Scholar
  48. Vohra, Y.K. (1978). J. Nucl. Mat. 75, p. 288.ADSCrossRefGoogle Scholar
  49. Werdiger, M., B. Arad, Z. Herds, Y. Horowitz, E. Moshe, S. Maman, A. Ludmirsky, and S. Elizer (1996). “Asymptotic Measurements of Free Surface Instabilities in Laser-Induced Shock Waves” Laser Particle Beams 14(2), pp. 133–147.CrossRefGoogle Scholar
  50. Zaretsky, E., and M. Kaluzhny (1996). “Fracture threshold and shock induced strengthening of stainless steel,” in: Shock Compression of Condensed Matter1995 (eds. S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 627–630.Google Scholar
  51. Zilbershtein, V.A., N.P. Christotina, A.A. Zharov, N.S. Grishina, and E.I. Estrin (1975). Phys. Met. Metall 39(2), pp. 208–217. [trans. from Fiz. Metall. Metalloved. 39, pp. 445–457(1975).]Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations