Skip to main content

Polymorphic Transformations and Phase Transitions in Shock-Compressed Solids

  • Chapter
Shock-Wave Phenomena and the Properties of Condensed Matter

Abstract

It is known that many solids can exist in different crystal structures depending on the pressure and temperature. The change in the crystal structure is often accompanied by a change in compressibility which, in turn, affects the evolution of compression and rarefaction waves. This circumstance opens a way to study thermodynamic parameters and kinetics of polymorphic transformations. Shockwave loading causes irreversible heating of the material which may result in its melting upon compression or during unloading from shock-compressed states. At higher peak pressures the irreversible part of the energy of shock-wave compression becomes sufficient to vaporize a significant fraction of the material during unloading. Melting and vaporization of shocked solids occur, for example, as a result of hypervelocity collisions of meteorites with space apparatus. This makes it important to study these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al’tshuler, L.V. (1978). “Phase transitions in shock waves (Review),” J. Appl. Mech. Tech. Phys. 19(4), pp. 496–505. [trans. from Zh. Prikl. Mekh. Tekh. Fiz. (4), pp. 93–103(1978).]

    Article  ADS  Google Scholar 

  • Anan’in, A.V., A.N. Dremin, and G.I. Kanel (1973). “Structure of shock waves and rarefaction waves in iron,” Comb. Expl. Shock Waves 9(3), pp. 381–385. [trans. from Fiz. Goreniya Vzryva 9(3), pp. 437–443 (1973).]

    Article  Google Scholar 

  • Anan’in, A.V., A.N. Dremin, and G.I. Kanel (1981). “Polymorphous transformations of iron in shock wave.” Comb. Expl. Shock Waves 17(3), pp. 320–326. [trans. from Fiz. Goreniya Vzryva 17(3), pp. 93–102 (1981).]

    Article  Google Scholar 

  • Anan’in, A.V., A.N. Dremin, and G.I. Kanel, and S.V. Pershin (1978). “Investigation of the structure of shock waves in boron nitride and graphite in the region of polymorphous transformation,” J. Appl. Mech. Tech. Phys. 19(3), pp. 372–376 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 19(3), pp. 112–116 (1978)].

    Article  ADS  Google Scholar 

  • Anrdiot, P., P. Chapron, V. Lambert, and F. Olive (1984). “Influence of melting on shocked free surface behavior using Doppler laser interferometry and X-ray densitometry,” in: Shock Waves in Condensed Matter—1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, pp. 277–280.

    Google Scholar 

  • Asay, J.R., L.P. Mix, and F.C. Perry (1976). “Ejection of material from shocked surface,” Appl. Phys. Lett. 29, pp. 284–287.

    Article  ADS  Google Scholar 

  • Balchan, A., and H.G. Drickamer (1961). “High-pressure electrical resistance cell and calibration points above 100 kbar,” Rev. Sci. Instr. 32(3), pp. 308–314.

    Article  ADS  Google Scholar 

  • Bancroft, D., E.L. Peterson, and S. Minshall (1956). “Polymorphism of iron at high pressure,” J. Appl. Phys. 27(3), pp. 291–298.

    Article  ADS  Google Scholar 

  • Barker, L.M. and R.E. Hollenbach (1974). “Shock wave study of phase transition in iron,” J. Appl. Phys. 45(11), pp. 4872–4887.

    Article  ADS  Google Scholar 

  • Baumung, K., H. J. Bluhm, B. Goel, P. Hoppe, H.U. Karow, D. Rush, V.E. Fortov, G.I. Kanel, S.V. Razorenov, A.V. Utkin, and O.Yu. Vorobjev (1996). “Shock-Wave Physics Experiments with High-Power Proton Beams,” Laser and Particle Beams 14(2), pp. 181–210.

    Article  ADS  Google Scholar 

  • Baumung, K., G.I. Kanel, S.V. Razorenov, D. Rush, J. Singer, and A.V. Utkin (1997). “Shock-melting pressures from non-planar impacts,” Int. J. Impact Eng. 20(1–5), pp. 101–110.

    Article  Google Scholar 

  • Belyakov, L.V., V.P. Valitski, N.A. Zlatin, and S.M. Mochalov (1967). “On melting of lead in shock wave,” Sov. Phys.-Dokl. 11(9), pp. 808–810. [trans. from Dokl. Akad. Nauk SSSR 170, pp. 540–543 (1966).]

    ADS  Google Scholar 

  • Betholf, L.D., L.D. Buxton, B.J. Thome, et al. (1975). “Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement,” J. Appl. Phys. 46(9), p. 3776.

    Article  ADS  Google Scholar 

  • Bushman, A.V., M.V. Zhernokletov, I.V. Lomonosov, Yu.N. Sutulov, V.E. Fortov, and K.V. Khrishchenko (1993). “Investigations of Plexiglass and Teflon in waves of secondary shock compression and isentropic unloading. The equation of state of polymers at high energy densities,”Phys.-Dokl. 38(4), pp. 165–167 [trans. from Dokl. Akad. Nauk SSSR 329(5), pp. 581–584 (1993)].

    MathSciNet  ADS  Google Scholar 

  • Chapron, P., P. Elias, and B. Laurent (1988). “Experimental determination of the pressure inducing melting in release for shock-loaded metallic samples,” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 171–173.

    Google Scholar 

  • Duvall, G.E., and R.A. Graham (1977). “Phase transitions under shock wave loading,” Rev. Mod. Phys. 49(3), pp. 523–581.

    Article  ADS  Google Scholar 

  • Erskine, D.J. and W.J. Nellis (1992). “Shock-induced martensitic transformation of highly oriented graphite to diamond,” J. Appl. Phys. 71(10), p. 4882.

    Article  ADS  Google Scholar 

  • Giles, P.M., M.H. Longen, and A.R. Marder (1971). “High-pressure martensitic transformation in iron,” J. Appl. Phys. 42(11), pp. 4290–4296.

    Article  ADS  Google Scholar 

  • Gluzman, V.D., G.I. Kanel, V.F. Loskutov, V.E. Fortov, and I.E. Khorev (1985). “Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading,” Strength of Materials 17(3), pp. 1093–1098. [trans from Problemy Prochnosti, 17(8), pp. 52–57(1985).]

    Article  Google Scholar 

  • Gogulya, M.F. (1989). “Shock structure and parameters under dynamic loading of natural graphite in polymorphic transformation domain,” Comb. Expl. Shock Waves 25(1), pp. 87–95 [trans from Fiz. Goreniya Vzryva 25(1), pp. 95–104 (1989)].

    Article  Google Scholar 

  • Gray III, G.T. (1990). “Shock recovery experiments: an assessment,” in: Shock Compression of Condensed Matter1989(eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, pp. 407–414.

    Google Scholar 

  • Hauver, E. (1965). “Shock-induced polarization in plastics, H. Experimental study of plexiglas and polystyrene,” J. Appl. Phys. 36(7), pp. 2113–2118.

    Article  ADS  Google Scholar 

  • Ivanov, A.G., and Novikov, S.A. (1961). “About the rarefaction shock waves in steel,” Sov. Phys.-JETP 13, pp. 1321–1323 [trans. from Zh. Eksp. Teor. Fiz. 40(6), pp. 1880–1881(1961)].

    Google Scholar 

  • Jamieson, J.C. (1963), Science 140, p. 72.

    Article  ADS  Google Scholar 

  • Jamieson, J.C., and A.W. Lawson (1962). “X-ray diffraction studies in the 100-kbar pressure range,” J. Appl. Phys. 33(3), pp. 776–780.

    Article  ADS  Google Scholar 

  • Johnson, P.C., B.A. Stein, and R.S. Davis (1962). “Temperature dependence of shock-induced phase transformation in iron,” J. Appl. Phys. 33(2), pp. 557–564.

    Article  ADS  Google Scholar 

  • Kanel, G.I., K. Baumung, D. Rush, J. Singer, S.V. Razorenov, and A.V. Utkin (1998). “Melting of shock-compressed metals in release,” in: Shock Compression of Condensed Matter—1997 (eds S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 155–158.

    Google Scholar 

  • Kanel, G.I., V.E. Fortov, K.V. Khishchenko, A.V. Utkin, S.V. Razorenov, I.V. Lomonosov, T. Mehlhorn, J.R. Asay, and L.C. Chhabildas (2000). “Thin foil acceleration method for measuring the unloading isentropes of shock-compressed matter,” in: Shock Compression of Condensed Matter1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 1179–1182.

    Google Scholar 

  • Kanel, G.I., S.V. Razorenov, E.B. Zaretsky, B. Herrman, and L. Meyer (2003). “Thermal “softening” and “hardening” of titanium and titanium alloy at high strain rates of a shock-wave deforming,” Phys. Solid State, 45(4) pp. 656–661.

    Article  ADS  Google Scholar 

  • Kaufinan, L. (1963). in: Solids under Pressure (eds. W. Paul and D.M. Warschauer) McGraw-Hill, New York.

    Google Scholar 

  • Kiselev, A.N., and A.A. Falkov (1982). “Phase Transformation in Titanium in Shock Waves,” Fiz. Goreniya Vzryva 18, p. 105 (1982). (in Russian)

    Google Scholar 

  • Kormer, S.B. (1968). “Optical investigations of properties of shock-compressed condensed dielectrics,” Sov. Phys.-Usp. 11(4) pp. 229–254 (1968) [trans. from Usp. Fiz. Nauk 94(4), pp. 641–687 (1968)].

    Article  ADS  Google Scholar 

  • Krüger, L., G.I. Kanel, S.V. Razorenov, L. Meyer, and G.S. Bezrouchko (2002). “Yield and strength properties of the Ti-6–22–22S alloy over a wide strain rate and temperature range,” in: Shock Compression of Condensed Matter—2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 1327–1330.

    Google Scholar 

  • Kutsar, A.R., V.N. German, and G.I. Nasova (1973). “(α →∞)-transformation in titanium and zirconium in shock waves,” Sov. Phys.-Dokl. 131(3), pp. 317–320 [trans. from Dokl. Akad. Nauk SSSR 213(1), pp. 81–84 (1973)].

    Google Scholar 

  • Kutsar, A.R., M.N. Pavlovsky, and V.V. Komissarov (1982). “The Observation of Two-Wave Configuration of Shock Wave in Titanium.” JETP Lett. 35(3), pp. 108–112 [trans. from Pis’ma Zh. Eksp. Teor. Fiz. 35(3), pp. 91–94 (1982)].

    ADS  Google Scholar 

  • Mao, H.K., W.A. Bassett, and T. Takahashi (1967). “Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar,” J. Appl. Phys. 38(1), pp. 272–278.

    Article  ADS  Google Scholar 

  • McQueen, R.G., S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter (1970). “The equation of state of solids from shock wave studies,” in: High-Velocity Impact Phenomena (ed. R. Kinslow) Academic Press, New York, pp. 293–417 (see also Appendices, pp. 518–568).

    Chapter  Google Scholar 

  • Nahme, H., and M. Hiltl (1995). “Dynamic properties and microstructural behavior of shock-loaded Armco iron at high temperatures,” in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer and M.A. Meyers) Elsevier, New York, pp. 731–738.

    Google Scholar 

  • Olinger, B., and J.C. Jamieson (1973). High Temp.-High Press. 5, p. 123.

    Google Scholar 

  • Razorenov, S.V., A.A. Bogach, and G.I. Kanel (1997). “Influence of heat treatment and polymorphous transformation on the dynamic rupture resistance of 40X steel,” Phys. Met Metall 83(1), pp. 100–103 [trans. from Fiz. Metall. Metalloved. 93(1), pp. 147–152(1997)].

    Google Scholar 

  • Razorenov, S.V., G.I. Kanel, E. Kramshonkov, and K. Baumung (2002). “Shock compression and spalling of cobalt at normal and elevated temperatures,” Comb. Expl. Shock Waves 38(5), pp. 598–601 [trans from Fiz. Goreniya Vzryva 38(5), pp. 119–123(2002)].

    Article  Google Scholar 

  • Razorenov, S.V., G.I. Kanel, and A.A. Ovtchinnikov (1981). “Recording of shock waves by manganinin gauges and the pressure of graphite-diamond transformation at elevated temperature,” in: Detonation. Proceedings of the Second All-Union Workshop on Detonation, Inst, of Chem. Physics, Chernogolovka, pp. 70–74. (in Russian).

    Google Scholar 

  • Razorenov, S.V., A.V. Utkin, G.I. Kanel, V.E. Fortov, A.S. Yarunichev, K. Baumung, and H.U. Karow (1995). “Response of high-purity titanium to high-pressure impulsive loading,”High Press. Res. 13(6), pp. 367–376.

    Article  ADS  Google Scholar 

  • Remiot, C., J.M. Mexmain, and L. Bonnet (1996). “Precise method to determine points on isentropic release curve on copper,” in: Shock Compression of Condensed Matter—1995 (eds: S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 955–958.

    Google Scholar 

  • Roundy, D., and M.X. Cohen (2001). “Ideal strength of diamond, Si, and Ge,” Phys. Rev. B 64, pp. 212103–212103.

    Article  ADS  Google Scholar 

  • Sikka, S.K., Y.K. Vohra, and R. Chidambaram (1982). “Oméga phase in materials,” Prog. Mater. Sci. 27, p. 245–310.

    Article  Google Scholar 

  • Sugak, S.G., G.I. Kanel, V.E. Fortov, A.L. Ni, and V.G. Stelmakh (1983). “Numerical modeling of the action of an explosion on an iron slab,” Comb. Expl. Shock Waves 19(2), pp. 239–246 [trans. from Fiz. Goreniya Vzryva 19(2), pp. 121–128 (1983)].

    Article  Google Scholar 

  • Vohra, Y.K. (1978). J. Nucl. Mat. 75, p. 288.

    Article  ADS  Google Scholar 

  • Werdiger, M., B. Arad, Z. Herds, Y. Horowitz, E. Moshe, S. Maman, A. Ludmirsky, and S. Elizer (1996). “Asymptotic Measurements of Free Surface Instabilities in Laser-Induced Shock Waves” Laser Particle Beams 14(2), pp. 133–147.

    Article  Google Scholar 

  • Zaretsky, E., and M. Kaluzhny (1996). “Fracture threshold and shock induced strengthening of stainless steel,” in: Shock Compression of Condensed Matter1995 (eds. S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 627–630.

    Google Scholar 

  • Zilbershtein, V.A., N.P. Christotina, A.A. Zharov, N.S. Grishina, and E.I. Estrin (1975). Phys. Met. Metall 39(2), pp. 208–217. [trans. from Fiz. Metall. Metalloved. 39, pp. 445–457(1975).]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanel, G.I., Fortov, V.E., Razorenov, S.V. (2004). Polymorphic Transformations and Phase Transitions in Shock-Compressed Solids. In: Shock-Wave Phenomena and the Properties of Condensed Matter. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4282-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4282-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1916-8

  • Online ISBN: 978-1-4757-4282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics