Two Examples of Spatially Resolved Shock-Wave Tests

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Chapter
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

As a rule, kinematic parameters of shock-wave loads are monitored at one point of a sample or are averaged over a transducer cross section. However, there is a set of problems for which it is important to obtain a spatial picture of the phenomenon. In these cases, spatially resolving instrumentation promises to make an essential contribution. The recently developed line-imaging interferometer technique (Baumung et al., 1996b) provides a capability for simultaneously recording the velocity history at many points along a line on the sample surface. In this chapter we present examples of the application of this capability to the study of spall fracture and of adhesion phenomena.

Keywords

Adhesion Strength Spall Strength Free Surface Velocity Spall Fracture Velocity History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumung, K, H.J. Bluhm, B. Goel, P. Hoppe, H.U. Karow, D. Rush, V.E. Fortov, G.I. Kanel, S.V. Razorenov, A.V. Utkin, and O.Yu. Vorobjev (1996a). Laser and Particle Beams 14(2), pp. 181–210.ADSCrossRefGoogle Scholar
  2. Baumung, K., G.I. Kanel, S.V. Razorenov, D. Rusch, J. Singer, and A.V. Utkin (1997). J. Phys.IV 7, pp.C3–921.Google Scholar
  3. Baumung, K., G. Müller, J. Singer, G.I. Kanel, and S.V. Razorenov (2001). J. Appl. Phys. 89(11), pp. 6523–6529.ADSCrossRefGoogle Scholar
  4. Baumung, K., J. Singer, S.V. Razorenov, and A.V. Utkin (1996b). in: Shock compression of Condensed Matter1995 (eds. S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 1015–1018.Google Scholar
  5. Gupta, V., A.S. Argon, D.M. Parks, and J.A. Cornie (1992). J. Meck Phys. Solids 40(1), pp. 141–180.ADSCrossRefGoogle Scholar
  6. Gupta, V., and J. Yuan (1993). J. Appl. Phys. 74(4), pp. 2397–2404.ADSCrossRefGoogle Scholar
  7. Kanel, G.I., S.V. Razorenov, and A.V. Utkin (1996). in: High Pressure Shock Compression of Solids II. Dynamic Fracture and Fragmentation (eds. L. Davison, D.E. Grady, and M. Shahinpoor), Springer-Verlag, New York, pp. 1–24.CrossRefGoogle Scholar
  8. Kanel, G.I., S.V. Razorenov, A.V. Utkin, K. Baumung, H.U. Karow, and V. Licht (1994). in: High-Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross) American Institute of Physics, New York, pp. 1123–1126.Google Scholar
  9. Trott, W.M., L.C. Chhabildas, M.R. Baer, and J.N. Castaneda (2002). in: Shock Compression of Condensed Matter—2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 845–848.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations