Introduction to the Theoretical Background and Experimental Methods of Shock Physics

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


This chapter deals with the laws of one-dimensional motion of compressible continuous media to the extent necessary for subsequent discussion of dynamic experiments. A comprehensive account of the fundamentals of the mechanics of continuous media can be found, for example, in textbooks by Courant and Friedrichs, 1948, and Zel’dovich and Raizer, 1967.


Shock Wave Particle Velocity Rarefaction Wave Compression Wave Shock Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al’tshuler, L.V. (1965). “Application of shock waves in physics of high pressures,” Sov. Phys.-Usp. 8, pp. 52–91, (1965) [trans. from: Usp. Fiz. Nauk 85(2), pp. 197–258 (1965)].ADSCrossRefGoogle Scholar
  2. Asay, J.R., and L.M. Barker (1974). “Merferometric measurement of shock-induced internal particle velocity and spatial variations of particle velocity,” J. Appl. Phys. 45(6), pp. 2540–2546.ADSCrossRefGoogle Scholar
  3. Barker, L.M. (1971). “A Model for Stress Wave Propagation in Composite Materials,” J. Composite Materials 5, p. 140.ADSCrossRefGoogle Scholar
  4. Barker, L.M., and R.E. Hollenbach (1974). “Shock Wave Study of Phase Transition in Iron,” J. Appl. Phys. 5(11), pp. 4872–4887.ADSCrossRefGoogle Scholar
  5. Baumung, K., H.J. Bluhm, B. Goel, P. Hoppe, H.U. Karow, D. Rush, V.E. Fortov, G.I. Kanel, S.V. Razorenov, A.V. Utkin, and O.Yu. Vorobjev (1996a). “Shock-Wave Physics Experiments with High-Power Proton Beams,” Laser and Particle Beams 14(2), pp. 181–210.ADSCrossRefGoogle Scholar
  6. Baumung, K., J. Singer, S.V. Razorenov, and A.V. Utkin (1996b). “Hydrodynamic Proton Beam-Target Interaction Experiments Using an Improved Line-Imaging Velocimeter,” in: Shock Compression of Condensed Matter1995 (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, pp. 1015–1018.Google Scholar
  7. Bernstein, D., and D.D. Keough. “Piezoresistivity of Manganin,” J. Appl. Phys. 35(5), pp. 1471–1474.Google Scholar
  8. Bloomquist, D.D., and S.A. Sheffield (1983). “Optically Recording Interferometer for Velocity Measurements with Subnanosecond Resolution,” J. Appl. Phys. 54, p. 1717.ADSCrossRefGoogle Scholar
  9. Bridgman, P.W. (1940). “The Measurements of Hydrostatic Pressure to 30 000 kg/cm3,” Proc. Am. Acad. Arts Sci. 74, p. 1.CrossRefGoogle Scholar
  10. Bushman, A.V., and V.E. Fortov (1983). “Models of equations of state of amatter,” Sov. Phys.-Usp. 26(6), pp. 465–496 [trans. from: Usp. Fiz. Nauk 140(2), pp. 177–232 (1983)].ADSCrossRefGoogle Scholar
  11. Caldirola, P., and H. Knoepfel (eds.) (1971). Physics of High Energy Density, Academic Press, New York.Google Scholar
  12. Chhabildas, L.C., and R.A. Graham (1987). “Development in Measurement Technique for Shock Loaded Solids,” in: Techniques and Theory of Stress Measurements for Shock Wave Applications (eds. R.R. Stout, F.R. Norwood, and M.E. Fourney), American Society of Mechanical Engineers, New York, pp. 1–18.Google Scholar
  13. Courant, R., and K.O. Friedrichs (1948). Supersonic Flow and Shock Waves, Merscience, New York.zbMATHGoogle Scholar
  14. Fowles, R., and R.F. Williams (1970). “Plane Stress Wave Propagation in Solids,” J. Appl. Phys. 41(1), pp. 360–363.ADSCrossRefGoogle Scholar
  15. Fuller, J.A., and J.H. Price (1964). “Dynamic Pressure Measurements to 300 kbar with a Resistance Transducer,” Brit. J. Appl. Phys. 15(6), pp. 751–758.ADSCrossRefGoogle Scholar
  16. Graham, R.A. (1993). Solids under High-Pressure Shock Compression, Springer-Verlag, New York.CrossRefGoogle Scholar
  17. Graham, R.A., and J.R. Asay (1978). “Measurements of Wave Profiles in Shock-Loaded Solids,” High Temp. High. Press. 10(2), pp. 355–390.Google Scholar
  18. Ivanov, A.G., and S.A. Novikov (1963). “The Method of Capacitor Gauge for Registration of Momentary Velocity of Moving Surface,” Apparatus and Experimental Technique 7(1), pp. 135–138 (in Russian).Google Scholar
  19. Kanel, G.I. (1977). “Experimental Determination of the Kinetics of Relaxation Processes During the Shock Compression of Condensing Media,” J. Appl. Mech. Tech. Phys. 18(5), pp. 685–689 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 18(5), pp. 117–122 (1977)].ADSCrossRefGoogle Scholar
  20. Kanel, G.I. (2001). “Distortion of the Wave Profiles in an Elastoplastic Body Upon Spalling,” J. Appl. Mech. Tech. Phys. 42(2), pp. 358–362 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 42(2), pp. 194–198 (2001)].ADSCrossRefGoogle Scholar
  21. Kanel, G.I., M.F. Ivanov, and A.N. Parshikov (1995). “Computer Simulation of the Heterogeneous Materials Response to the Impact Loading,” Int. J. Impact Engineering 17(1–6), pp. 455–464.CrossRefGoogle Scholar
  22. Kanel, G.I., S.V. Razorenov, and V.E. Fortov (1988). “Viscoelasticity of Aluminum in Rarefaction Waves,” J. Appl. Mech. Tech. Phys. 29(6), pp. 824–826 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 29(6), pp. 67–70 (1988)].Google Scholar
  23. Kanel, G.I., G.G. Vakhitova, and A.N. Dremin (1978). “Metrological Characteristics of Manganin Pressure Pickups under Conditions of Shock Compression and Unloading,” Comb. Expl. Shock Waves 14(2), pp. 244–248 [trans. from Fiz. Goreniya Vzryva 14(2), pp. 130–135 (1978)].CrossRefGoogle Scholar
  24. Landau, L.D., and E.M. Lifshitz (1959). Fluid Mechanics, Pergamon Press, Oxford.Google Scholar
  25. Novikov, S.A., I.I. Divnov, and A.G. Ivanov (1966). “The Study of Fracture of Steel, Aluminum and Copper under Explosive Loading,” Phys. Met. Metall. 21(4) pp. 122–128 [trans. from Fiz. Metall. Metalloved. 21(4), pp. 607–615 (1966)].Google Scholar
  26. Oved, Y., G.E. Luttwak, and Z. Rosenberg (1978). “Shock Wave Propagation in Layered Composites,” J. Composite Materials 12, p. 84.ADSCrossRefGoogle Scholar
  27. Razorenov, S.V., G.I. Kanel, and V.E. Fortov (1985). “Measurement of the Width of Shock Fronts in Copper,” Sov. Phys.-Tech. Phys. 30(9), pp. 1061–1062 [trans. from Zh. Tekh. Fiz. 55(9), pp. 1816–1818 (1985)].Google Scholar
  28. Razorenov, S.V., G.I. Kanel, O.R. Osipova, and V.E. Fortov, (1987). “Measurement of the Viscosity of Copper in Shock Loading,” High Temp. 25(1), pp. 57–61 [trans. from Teplofiz. Vys. Temp. 25(1), pp. 65–69 (1987)].Google Scholar
  29. Seaman, L. (1974). “Lagrangian Analysis for Multiple Stress or Velocity Gauges in Attenuating Waves,” J. Appl. Phys. 45(10), pp. 4303–4314.ADSCrossRefGoogle Scholar
  30. Skidmore, I.C., and E. Morris (1962). “Experimental equation-of-state data for uranium and its interpretation in the critical region,” in: Thermodynamics of Nuclear Materials, International Atomic Energy Agency, Vienna, pp. 173–216.Google Scholar
  31. Zel’dovich, Ya. B., and Yu. P. Raizer (1967) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (eds. W.D. Hayes and R.F. Probstein), Vol. II, Academic Press, New York, Reprinted by Dover Publications, Mineola, New York (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations